Tutorial
Guide

Getting Started
with BRender

Copyright © 1996 Argonaut Technologies Ltd. All rights reserved.

Argonaut Technologies Ltd. makes no expressed or implied warranty with respect to the contents of this
manual, and assumes no responsibility for any errors or omissions which it may contain. No liability is
assumed for any direct, indirect or consequential damages or losses arising in connection with the
information or examples described herein.

Use of BRender is governed by the terms of the licence agreement included with the product.

Author: Robbie McQuaid

Technical Direction: Crosbie Fitch, Sam Littlewood, Dan Piponi, Philip Pratt, Simon Everett,
Vinay Gupta, John Gay, Neela Dass, Tony Roberts

Project Managers: Paul Ayscough, Stefano Zammattio

MS-DOS and Windows 3.1, Windows N'T and Windows 95 are registered trademarks of
Microsoft Corporation.

3D Studio and AutoCAD are registered trademarks of Autodesk Inc.

Argonaut Technologies Limited
Capitol House, Capitol Way

Colindale, London NW9 0DZ

United Kingdom

Introduction

1 Setting The Scene

Scene Description

Co-ordinate Systems

Perspective and Parallel Projection
Geometric Transformations
Matrix Algebra and BRender
Visualisation

Hidden-Surface Removal

Calculating Colour

Colour and the CRT
Double Buffering
More about Hidden-Surface Removal

Describing Scenes in BRender

BRender Data Types

The Registry

BRender Program Structure
Conventions

2 Getting Started
Initialisation and Termination
Setting up the World Database
Animation Loop

More About Background Colour

3 Positioning Actors

Your Second Program

Transformation Function
Adding the Sphere and Torus
The Animation Loop

4 Actor Hierarchies

33

35

40

42

42

45

47

50
53
54

55

CONTENTSi

CONTENTSI
=

S Adding Colour
The Program
8-Bit Indexed Colour Mode

6 Texture Mapping
Loading the Texture Map
Loading the Material
Assigning the Material
8-Bit Colour

7 File Conversion
Converting 3D Studio (.3ds) Files

Importing Texture Maps

15-bit True Colour
8-bit Indexed Colour

8 BRender Tools
3DS2BR
GEOCONV
DXF2BR
TEXCONV
MKSHADES
MKRANGES
PALJOIN
VIEWPAL

Importing Models into BRender

Working with 8-bit Colour
Working with True Colour

61

64

65

71

72

73

73

77

81

82

88

88
94

95

98

100

102

103

105

105

106

107

107

107
124

Introduction

BRender is an extremely powerful real-time 3D graphics library. Its API (Applications
Programming Interface) defines a set of C function calls. These function calls allow
you to create interactive applications that generate three-dimensional images.

This book is your introduction to the world of BRender. It provides a step-by-step
guide to the main features of the API and, we hope, the building blocks you will need
to construct a conceptual model of BRender. Note that this is not a definitive guide
to BRender and does not demonstrate the full range and power of BRender’s

features. It is intended to be read in conjunction with the technical reference manual.

The goal of this book is to help you produce your own 3D applications as quickly, and
with as little fuss, as possible. To this end, sample programs are listed and dissected.
We start with basic skeleton programs illustrating the structure of a BRender program
and build these programs into more complex sequences. The source code for these
programs can be found on the Tutorial Programs disk accompanying this guide. It is
strongly recommended that you compile, edit and run these programs as you work
through the tutorials. By experimenting with the supplied sample programs, you will
quickly become familiar with BRender’s vocabulary and learn how to implement its
function calls.

Whilst you will need to be a proficient C programmer in order to make use of
BRender, we do not assume an in-depth knowledge of 3D graphics principles. This
is not a 3D graphics textbook however, only graphics principles relevant to BRender
are described.

If you are new to writing 3D graphics applications, it is strongly recommended that
you get your hands on a good 3D graphics textbook, for example Computer Graphics
- Principles and Practice, Second Edition, by James D. Foley et al., published by
Addison Wesley Publishing Co., 1990. In addition, a general purpose maths primer
covering vectors and matrices will prove invaluable.

INTRODUCTIONI

Settlng The 1
Scene

SETTING THE SCENE!

This chapter presents an overview of BRender. It introduces a number of
fundamental concepts you should be familiar with before you tackle your first
BRender program. The structure and component features of a 3D computer graphics
system are described, and how these features are realised in BRender. Readers new to
3D graphics will be introduced to a number of generic 3D graphics concepts.

So how does an imaginary three-dimensional world come to be represented by two-
dimensional images on a computer screen? Consider someone in a room, looking
through a window at the world outside. What that person sees through the window is
determined by a number of factors: where they are positioned in the room, the
direction and orientation of their gaze, the field of view, the lighting conditions etc.

A 3D computer graphics system attempts to mimic this viewing process.
Real

2D surface:
window

Imaginary
world

2D surface:

Figure 1 A 3D Graphics System mimics how we view the world through a window

A mathematical representation of an imaginary world is used to simulate the ‘real’
world. A number of user defined parameters determine what is actually displayed on
(or projected onto) the computer screen. These include the view position (sometimes

Scene

referred to as the camera position), the view direction and orientation, the shape of the
view volume, and the specified lighting conditions.

A 3D graphics simulation can be thought of as a three stage process. Firstly, an
imaginary scene is described to the system in a language it understands. Then, a
representation of what is currently ‘visible’ in the world is projected onto the screen.
Finally, the colour of each picture element, or pixel, on the screen is calculated.

Rendering
AN
4 h

Scene descriptign—e-| Visualisatign—e-| Calculating colo

Figure 2 3D Graphics Simulation Sequence

The process whereby a scene gets drawn (stages 2 and 3 above), given an arrangement
of previously defined models, is known as rendering. A very powerful rendering
engine lies at the heart of BRender.

Description

In a computer graphics system, a mathematical model of an imaginary scene is created
and stored inside the computer. In order to accomplish this, the graphics system must
provide some means of describing an imaginary scene to the computer. For the
computer to generate a realistic simulation of the scene, it needs to know:

the shape and position of all models (or model actors in BRender terminology) in

the scene

the colour and texture of these model actors

the view (or camera) position, direction and orientation

the lighting conditions.

The elements that make up a scene (typically models, lights and cameras) are
described in BRender terms as actors. To avoid confusion at a later date, BRender
terminology will be adopted from the beginning. What would be conventionally
termed an ‘object’ will be here referred to as a model actor.

()]
SETTING THE SCENEI

SETTING THE SCENE!

Co-ordinate Systems

In 3D computer graphics three-dimensional Cartesian co-ordinate systems are used to
represent three-dimensional space. A model actor is defined initially in its own model
co-ordinate system.

y

O

4

Figure 3 Models are defined in model co-ordinates

Note the orientation of the axes. With positive x to the right, and positive y pointing
up, the positive z-axis points towards the viewer.

Actor data structures are designed to facilitate hierarchical relationships between
elements of a scene. An actor may have a parent, and/or children. If an actor has no
parent, it is the root actor of its hierarchy.

If an actor has a parent, its position and orientation is defined solely with respect to its
parent’s co-ordinate system, rather than with respect to some absolute co-ordinate
system.

z

Figure 4 Actors transformed into parent’s co-ordinate system

By default, an actor is centered at the origin in its parent’s co-ordinate system.
Geometric transformations, discussed below, are used to change the position,
orientation and size of an actor in its parent’s co-ordinate system.

If an absolute frame of reference is required, the application might define a universal
parent actor (called “‘World’ perhaps), and make all other participants in a scene
children of ‘World’. “World’ ’s co-ordinate system (call it ‘world space’) could then be
used as an absolute frame of reference within the application.

Besides arranging the model actors that constitute the scene, the application must
define a view position and orientation. These, together with other parameters such as
lighting conditions and the shape of the view volume, determine which parts of a
scene are visible.

View
position View V

YA

olume

z

Figure 5 Everything outside the view volume is invisible

Model actors are tested, or clipped, against the sides of the view volume before being
projected onto the screen. Everything lying entirely outside the view volume is
eliminated. For lines or polygons that are partly inside and partly outside the view
volume, the portions lying outside are eliminated. The edges of clipped polygons are
reconstructed automatically.

|
SETTING THE SCENEI

Figure 6 Model actors are clipped against the sides of the view volume

Perspective and Parallel Projection

The viewing process discussed above attempts to simulate how real world scenes are
projected onto a 2D viewing surface (such as the viewer’s ‘window’ or on the film in
a camera). Projection rays (or vectors) reflected from the surfaces of models in the
view volume converge at a focal point at the view position. This is known as

perspective projection.

SETTING THE SCENE!

Figure 7 Perspective projection

It is important to realise that with perspective projection physical dimensions are
relative. How big a model appears on the screen depends not only on its physical
dimensions as defined in model co-ordinates, but also on its position in 3D space
relative to the view position. The farther a model is from the camera, the smaller it
appears on the screen.

The projection of a given model onto the screen could be enlarged, for instance, by
increasing the model’s dimensions (see ‘Scaling’ below), by moving it closer to the
view position (see “Translation’ below), by moving the view position closer to the
model or by decreasing the field-of-view angle (see ‘Visualisation’ below).

With a parallel projection, the view volume is a rectangular parallelepiped. Distance
from the camera does not affect how large an object appears on the screen. Projection
rays/vectors do not converge at a focal point but are projected along parallel lines.

Figure 8 Parallel projection

Parallel projections are used in architectural and computer aided design applications
where it is necessary to maintain relative sizes and angles after projection. In 3D
computer graphics, perspective projections are usually specified. BRender supports
both (the default is perspective).

Geometric Transformations

Geometric transformations are used to determine the position, orientation and size of
an actor in its parent co-ordinate system. The translation, rotation and scaling
transformations introduced below are essential to many graphics applications. They
are the building blocks from which more complex transformations are constructed.

SETTING THE SCENEI

SETTING THE SCENEI
=

Translation

A translation transformation changes an actor’s position in 3D space (relative to the
origin in its parent’s co-ordinate system). A translation T(dx,dy,dz) moves a point d,,
units parallel to the x-axis, d, units parallel to the y-axis and d_ units parallel to the z-

axis.

r4
Figure 9 Translation: T(5,0,0)

Figure 9 illustrates a translation, 'T(5,0,0). The model actor is moved +5 units parallel
to the x-axis (i.e. +5 is added to the x-components of the model’s vertices). The y and
z components are not altered.

Rotation

A rotation, as its name implies, rotates a model around an axis. A rotation R (8), Ry(e)
or R (0), rotates a point 0 degrees around the specified axis.

Figure 10 Rotation: R,(30)

Figure 10 shows the, previously translated, model in Figure 9 rotated 30° around the

Z-axis.

Scaling

A scaling transformation changes the apparent size (and sometimes shape) of a model.
A model can be scaled by multiplying the co-ordinates of its vertices by specified
scaling factors. A scaling S(s,.s,,s;) multiplies the x component of a point by s,, the y
component by s, and the z component by s,.

A'scaling factor greater than 1 will ‘stretch’ a model in the appropriate x,y,z dimension.
A value less than 1 will ‘squeeze’ it.

z

Figure 11 (a) Scaling: S(2,1,1); (b) Scaling: S(1,0.5,1)

The scaling applied in Figure 11(a) stretches the model horizontally along the x-axis
(the x components of the model’s vertices are multiplied by 2). The model appears
smaller and fatter. In Figure 11(b) the model is squeezed vertically (all y values are
halved).

If the same value is used for all three (x, y, and z) scaling elements, the model will
retain its original proportions but change in size.

y

Figure 12 Scaling: S(1,-1,1)

An argument of -1 reflects the model in a plane. The scaling shown in Figure 12
reflects the model in the x-z plane.

SETTING THE SCENEI

[
I

SETTING THE SCENE

A'scaling of (2,2,2) doubles a model’s length, width and depth —increasing its ‘volume’
by a factor of 8, as seen in Figure 13(a).

Figure 13 (a) Scaling: (2,2,2); (b) Scaling: (0.5,0.5,0.5)

Geometric transformations are most commonly represented in computer graphics by
matrices. You don’t need to understand matrix algebra in order to implement simple
transformations. You specify the relevant parameters (direction and extent of the
translation, the axis and angle of rotation etc.) and BRender sets up the transformation
matrices.

However, in order to make full use of BRender’s power and flexibility, you will need
to understand how BRender implements matrix arithmetic. Each element of a
BRender transformation matrix can be freely and individually accessed. If you are
unfamiliar with the rudiments of matrix arithmetic, you may wish to consult your
maths textbook before proceeding to the next section.

Matrix Algebra and BRender

General purpose 3D transformations are represented in BRender using
br_matrix34 data structures. These are effectively 4x4 matrices (in practice, the
redundant fourth column is omitted for storage purposes and for speed).

Translation is conventionally treated as addition, whereas scaling and rotation are
treated as multiplications. We want to be able to implement all three transformations
in a consistent way, so that they can be easily combined. For this reason points are
described in homogeneous co-ordinates. Homogeneous co-ordinates make it possible

to implement all three transformations as multiplications.

In homogeneous co-ordinates, we add a fourth co-ordinate to a point — (x,y,z,W). The
expression (x,y,z,W) represents the same point as (x/W,y/W,z/W,1). x/W,

y/W and z/W are said to be the Cartesian co-ordinates of the homogeneous point. In
practice, the W co-ordinate is almost always 1 and is omitted for storage purposes and

speed. See Section 5.2 of Computer Graphics — Principles and Practice, by James D.
Foley et al., for a more detailed discussion of homogeneous co-ordinates.

Translation

To translate point P, with co-ordinates (x,y,z), to a point P’, with co-ordinates (x’,y’,
z’), by means of translation T(8,, Sy, d,), BRender builds a translation matrix:

T6,.5,.5) =

o © O =
o O O =
o © O =
_ O O =

x Oy F4

then pre-multiplies it by a row vector representing point P:

@y, z) =(xyz1l)

o O O =
o © O =
o © O =
—_ o O ==

x Oy z

= (x+0,y+ 8),, 7+ SZ)

Note that BRender’s implementation of matrix arithmetic
post-multiplies row vectors by matrices (rather than the alternative
convention of post multiplying matrices by column vectors).

Rotation

BRender constructs the following matrix to implement a rotation 8 about the z-axis:

cos® sin6 0 O

R(6) = —sin® cos® 0 O
0 1 0

0 0 0 1

This is easily verified. A unit vector along the x-axis, (1,0,0), rotated 90° around the z-
axis, should produce a unit vector along the y-axis:

0100
aoon| 1 OO0t _pion
0010
0001

SETTING THE SCENEi

SETTING THE SCENEI
=

The result (remembering that cos 90° = 0 and sin 90° = 1) is a unit vector along the y-
axis, (0,1,0) as expected.

Scaling

A scaling matrix:

s, 0.0 0
S(y o0 s 000

S.,8.,8) =
A 0 0 5,0
5, 8, 8. 1

would be built to implement a scaling transformation:

s. 0.0 0

0 s, 0 O
x,y,z) = (xyzl) J

0 0 s, 0

0O 0 0 1

= (xsx, YSys zsz)

Matrices can be concatenated to accumulate transformations. The compound
transformation illustrated in Fig. 10 above for example, a translation followed by a
rotation, could be represented by a single concatenated transformation matrix:

. . 3 . . .
given that sin30°=0.5, and cos30°= £ . This transformation matrix would transform a

2
3

point P = (0,0,0), for instance, to point P’ = (57 ,2.5,0) as follows:

é 05 0 0
2
-0.5 ? 00
(,y;2) =(0001)
0 0 10
é—gé 25 0 1

= (é—gé 2.5, O)

Matrix multiplication is not commutative, in other words:

M1 M2 * M2M1

1 0 0 O cos30° sin30° 0 O
T(Sx,5y, Sz)Rz(G) _ 01 0 O —sin30° cos30 0 0
cT 00 1 O 0 0 1 0
5 0 0 1 0 0 0 1
cos30° sin30° 0 O
_ —sin30° cos30° 0 O
0 0 1 0
5c0s30° cos30° 0 1
é 05 0 0
2
-0.5 é 0 0
- 2
0 0 10
5# 25 0 1

The order in which you specify transformations is thus significant. Consider the
consequences of reversing the order in which the above transformations are
implemented. A 30° rotation about the z-axis, followed by a translation T(5,0,0),
would generate the image in Figure 14(b).

z z

Figure 14 (a) Translate then Rotate: T(SXSYSZ)RZ(G); (b) Rotate then Translate: RZ(G)T(SXSYSZ)

SETTING THE SCENEI

SETTING THE SCENEI
=)}

The resultant concatenated transformation matrix is given below.

cos30° sin30° 0

—sin30° cos30°
R(®TES,, 8,,8) = sn(l) CosO

0 0

0
0
0
1

S = O
wm o O =
S O =
S = O
- o O O

c0s30° sin30°
— | —sin30° cos30°
0 0

5 cos30°

S = O O
- o o O

| &

05 00

= —0.5_.@00
p)
0

5

0
0

- o

1
0
This transformation matrix would transform a point P = (0,0,0), for instance, to point

P’ = (5,0,0) as follows:

= 0500

e

W,y.2) = 000D)| o5 ¥3 ¢ o

= (5,0,0)

Clearly, matrix multiplication is not commutative.

Remember to carefully consider the order in which you specify transformations. You
may wish to experiment with the tutorial programs presented in the following
chapters by changing the order in which geometric transformations are implemented.

Visualisation

As noted above, what is actually displayed on the screen once an imaginary scene has
been defined depends on the view position and orientation, and on the shape of the

view volume. The view volume corresponding to BRender’s default camera is
illustrated below.

Figure 15 The Default Camera

Note that the default camera is perspective. The field of view is the angle subtended
between the top and bottom of the view volume, typically 45° in BRender. Setting
this angle is analogous to selecting the focal length of a photographic lens. A narrow-
angle field of view simulates a telephoto lens. Models appear closer and larger.

[
I

SETTING THE SCENE

[
!

SETTING THE SCENE

m%

field-of-view
angle (45°)

Figure 16 (a) Default Field of View (45°)

\Narrow-angle
field-of-view
angle (30°)

Figure 16 (b) A narrow-angle Field of View

A wide-angle field of view simulates a wide-angle lens. Models appear smaller, and
further away.

\Wide-ang e
field-of-view
angle (75°)

Figure 17 A wide-angle field of view

The field-of-view angle, together with the (user definable) hither and yon planes,
determines the shape of the view volume. The shape of the view volume, in turn,
determines what is potentially visible. The renderer tests models against the edges of
the view volume to determine whether or not they are inside it. Models found to lie
outside the view volume are not considered further.

Hidden-Surface Removal

Once the renderer has determined which models are inside the view volume, it must
establish which surfaces are actually visible. A model may lie within the view volume,
but be entirely obscured by another model positioned closer to the view position.

SETTING THE SCENEi

SETTING THE SCENEI
=

X

Figure 18 Hidden surfaces are not displayed

Hidden-Surface Removal techniques are used to ensure that only surfaces visible
from the view position are displayed. Surfaces must be sorted according to their
position in 3D space relative to the view position. This is necessary in order to
determine which surfaces are visible, and which are obscured by surfaces nearer the

view position.

Calculating Colour

Once an imaginary world has been described, and the renderer has determined which
elements are currently visible, it must then decide how to display these visible
elements — what colours to apply and where. To understand how BRender handles
colour, let’s start by briefly considering how monitors display colour.

Colour and the CRT

The inside of the glass screen on a colour monitor is covered with closely packed
groups of red, green and blue phosphor dots. These phosphor dots emit red, green and
blue light, respectively. Each group of dots is so small that light emanating from them
is perceived by the viewer as a single colour.

guns

|-

Composite
colour

Figure 19 CRT screen

Three electron guns rapidly scan the screen from top to bottom, one line at a time. As
each pixel is addressed, the intensities of the electron beams fired from the red, green
and blue electron guns are varied to reflect the amount of red, green and blue light in
that pixel’s colour. In this way a picture is drawn on the screen. The entire screen is
scanned many (typically 60 or more) times a second — too fast for the human eye to
detect any movement. The viewer sees a constant unflickering picture (the same
principle is at work in the cinema, where movie frames projected at 24 frames per
second are blended together into a smooth sequence inside the viewer’s brain).

The electron guns get their colour information, via a video signal, from a screen buffer.
The screen buffer, also known as the frame buffer, is an area of memory mapped
directly to the screen.

L—~_| Video
controller

COoOO0O0O0O0OOO
OO
OO
PoooOoORRRO
POoOOoOoORRRRFO

RPRRRRRRRO
PRRRRRRRPO
ROoOoORRRRFRO
mroooOoORrRRRFO
OO0
COo0O0O0OO0OO
CoOO0O0O0O0OOO

Figure 20 Screen buffer mapped to screen

Dedicated circuitry, known as the Video Controller, interprets the contents of the
screen buffer, pixel by pixel, and automatically updates the screen. The renderer is
responsible for updating the screen buffer. These operations are transparent to the
programmer, who writes an application describing a scene and expects an accurate
representation of this scene to be displayed on the screen.

The screen buffer ‘depth’ (or the number of bitplanes —a bitplane contains one bit of
data for each pixel) determines how many colours can be displayed. In a 3-bit screen
buffer, for example, a single bit is available for each of the r, g and b (red, green and

|I|
[

SETTING THE SCENE

I
)

SETTING THE SCENE

blue) components. Each is either fully ON or OFF. A total of eight colours are
available to choose from (000 to 111).

Colour Components Value Colour

r g b

0 0 0 0 black

0 0 1 1 blue

0 1 0 2 green

0 1 1 3 cyan

1 0 0 4 red

1 0 1 5 magenta
1 1 0 6 yellow
1 1 1 7 white
B

rOOIIILy RGB

_ Video
L controller| gignal

| Wl

Figure 21 A 3-bit screen buffer contains three bit-planes

The number of colours that can be displayed may be changed by using a colour lookup
table (or CLUT). The values stored in the frame buffer no longer generate colours
directly, but are used to point to, or index, locations in the CLUT. A typical CLUT
may store each colour as a 15-bit number, 5 bits for each r,g,b component.

RGB

Video
controller | sjgnals

CLUT

10101/ 1101101111

N (OO | WIN RO

Figure 22 3-bit indexed mode

Note that the number of colours available at any one time does not change. In the 3-
bit system depicted in Figure 22, there are still only 8 colours to choose from at any

one time. However, the CLUT may contain any 8 colours from a total of 215 (or 32,
768). A selection of colours, or a colour palette, must be loaded into the CLU'T before
rendering begins. In indexed colour mode, one or more colours in a given image can
be changed simply by loading a different colour palette. This is a potentially powerful
feature. Colour manipulation and animation effects can be implemented using a
fraction of the computational power that would be needed to achieve the same results
by updating the stored image.

BRender colour modes include 8-bit indexed colour, and 15- and 24-bit non-indexed
or true colour.

Video RGB
controller | signals
CLUT
R G B
0
1
2
3
4
254
255

Figure 23 8-bit indexed mode

A total of 256 (28) colours are available at any one time in 8-bit indexed mode. In 15-
bit true-colour mode, there are 32,768 (215) colours to choose from. In 24-bit mode 224
(216.7 million) different colours are available.

I
w

SETTING THE SCENE

I
5N

SETTING THE SCENE

D’
M
<0“0
Red
= G:
reen
i 2 Video RGB
e controller | signal
Blue
Figure 24 (a) 15-bit true colour
2
&
Nl
s {\’ ||
ENAEEERRRRY
H Red
,,f:f;;;ﬁ [T TTT]
[T
+ I\\I\‘\‘\‘\“‘
R H Green
o E Tl v L2
3 = controller | signal
7
I\\I\‘\‘\‘\“"
T Blue
AT

Figure 24 (b) 24-bit true colour

Indexed colour is more complex to work with than true colour. A colour palette must
be set up and loaded before rendering begins. It must be sufficiently general to be
useful, yet satisfy light intensity requirements. Faces on a model should appear lighter
or darker according to their orientation with respect to the light source/s. In order to
simulate realistic lighting conditions, various shades (from light to dark) of each colour
in a scene should be available from the colour palette. In practice, the palette may be
divided into a number of strips, or ramps. Each strip consists of a variety of shades of
a single colour, ranging from very light to very dark. The palette must also be capable
of displaying acceptable approximations of texture maps that may have been created
using a completely different palette. For a more detailed discussion of indexed colour
and texture mapping, see Chapters 6 to 8.

Video Modes

A variety of user-selectable video modes are usually available on a particular platform.
Most systems support 8-bit indexed colour along with a variety of true-colour modes.
The screen resolutions available will depend, in part, on the size of the video memory.
By changing the video mode you can alter the screen resolution, as well as the number
of colours available. Commonly used PC screen resolutions, for example, include the
320 x 200 and 640 x 480 VGA standards, 1024 x 768 and 1280 x 1024 SVGA standards
and the intermediate 800 X 600. If you don’t know which video modes are available to
you, run the appropriate BRender hardware interrogation utility (if available on your
platform — refer to your installation guide). For BRender x86, for instance, this is
VESAQ.EXE, located in the Tools directory. VESAQ . EXE interrogates your video
circuitry before displaying a list of the video modes supported by your system.

Note that the task of making BRender output visible to the user belongs to the
application. BRender provides assistance whenever possible.

When you write a BRender program, you must select a video mode. This is discussed
in detail in Chapter 2, where your first BRender program is introduced. In general, the
lower the screen resolution, the faster your program will run (since there are fewer
pixel values to calculate). Of course your images will lose sharpness at lower
resolutions. In 3D computer graphics there is always a trade-off between speed and
image quality. Since speed is a crucial factor in real time animation, you will probably
want to work with low screen resolutions, certainly during the initial development
stage (of course a higher, slower resolution may prove more useful for some
applications). Most of the animations included on the Tutorial Programs disk are
displayed using the lowest available screen resolution.

Double Buffering

As noted above, the Video Controller repeatedly scans the screen buffer, refreshing
the screen as it does so. In effect, the contents of the screen buffer are permanently
displayed.

Now consider what the viewer would see if scenes were rendered directly into the
screen buffer. Since the screen buffer is mapped directly to the screen, the frame
construction process would be visible and the viewer would be aware of
discontinuities in rapidly changing scenes.

A simple solution is to use two buffers. The renderer constructs a scene in a back
buffer while the screen, or front, buffer is being displayed. When the scene in the back
buffer is complete and it is time to display it, the application ‘swaps’ the buffers so
that the back buffer becomes the screen buffer. The next frame is then constructed
in the new back buffer (the old screen buffer).

[\
SETTING THE SCENEI

SETTING THE SCENEI
=)

Some systems come with two hardware screen buffers, so that back and front buffers
are literally swapped as described above. Where only a single screen buffer exists in
hardware, BRender sets up a back buffer in memory. When it is time to display a
newly constructed scene, BRender copies the contents of the back buffer into the
screen buffer.

How double buffering is implemented is transparent to the applications programmer,
who simply calls BRender’s double buffering function at the appropriate point in the
program.

More about Hidden-Surface Removal

Figure 25 illustrates the importance of hidden surface removal. Figure 25(a) looks
correct. But what about Figure 25(b). This is what would be displayed if the model
nearest the viewer were rendered into the screen buffer first.

Figure 25 (a) Fence rendered first

Figure 25 (b) House rendered first

(%)
SETTING THE SCENEI

SETTING THE SCENEI
=

The Z-Buffer Renderer

The Z- or depth buffer is an effective hidden-surface removal algorithm. Remember
that colour information for each pixel is initially written to the back buffer. A depth
buffer with the same number of entries is used to store a z, or depth, value for each
pixel. The depth buffer is initialised to a large number beyond the visible range (e.g.
FFFF for a 16-bit buffer). You could think of this value as the z-position of the
background.

Each potentially visible surface is rendered in turn, in an arbitrary order. The
magnitude of the z-component of each visible point on a surface is compared with the
relevant value in the Z-Buffer. If it is nearer or as near as the point whose colour and
depth are currently in the buffers, then the new point’s colour and depth replace the
old values. At any time, the Z-Buffer and the back buffer will store the information
associated with the lowest (in magnitude) z value encountered thus far. When the
back buffer is subsequently swapped with the screen buffer, the colour displayed at
any pixel is that of the surface closest to the view position.

Suppose Surface 1 in Figure 26 is rendered first. Since 10, the magnitude of its z-
component, is less than the z-component of the background (assumed to be initialised
to FFFF), the colour and depth information associated with Surface 1 are copied to
the buffers.

Surface 1

colour: red
Z-buffer

fiof

Figure 26 Surface 1 rendered first — since I-10! < IFFFFI, pixel colour is red

If Surface 2 is then rendered, its associated depth and colour information will replace
those of Surface 1, since it is closer to the view position (5<10).

Surface 1
colour: red

Z-buffer 2/ z-value: 10
Surface

5F colour: blue
z-value: -5

Figure 27 Surface 2 rendered next — since I-5| < I-10I, final pixel colour is blue

For each pixel the z-value of the closest surface so far considered will be stored in the
depth-buffer and the colour value for this surface stored in the back buffer.

The applications programmer is responsible for setting up and initialising the depth
buffer (in addition to the screen and back buffers) using BRender functions.

The Z-Buffer is a fast, high quality renderer. However, it requires a considerable
amount of memory.

The Z-Sort Renderer

The Z-Sort renderer attempts to achieve hidden surface removal by sorting surfaces
according to their distance from the view position, and then drawing them from back
to front.

The Z-Sort is a fast renderer that requires relatively little memory (particularly for
simple scenes). Hidden Surface Removal schemes are discussed in greater detail in
your technical reference manual.

13
SETTING THE SCENEI

I
<

SETTING THE SCENE

Describing Scenes in BRender

So how does the applications programmer go about describing a scene to BRender?
What ‘scene description language’ does BRender understand? How is the interface
between the applications programmer and BRender defined and structured?

BRender data structures are used to convey scene description information to the
renderer. The actor data structure is fundamental to scene description. All
participants in a scene are categorised as actors. An actor can have a number of
children, each of whom is also an actor. In this way a tree of actors is built up
representing the world.

Actor Actor

(Actor] [Actor | (Actor] (Actor] [Actor]

Figure 28 Simple tree of actors

Different types of actors are used to represent different entities. Commonly used
actor types include Models, Lights, Cameras and None (a reference actor
used to assist in the layout and organisation of actor hierarchies — invariably found at
the root of an actor tree). The smallest actor hierarchy that will produce a rendered
scene is depicted in Figure 29.

(camery (Light)

—

e

Figure 29 Four-actor tree

This scene contains a single model actor that references information describing its
shape, colour, texture and position. The light actor references information describing
the type of lighting used to illuminate the scene (point, direct or spot), its position,
orientation and colour. The camera actor references information describing the view
volume including the view position, the field of view and how the scene is projected
onto the viewing surface. The None, or dummy, actor doesn’t usually reference any

data (although it can) but is used to build the hierarchical tree structure. It forms the
root of the actor tree used to describe the world.

A model actor may specify, or inherit from a parent, a default ‘material’. If a material
is not explicitely assigned to a model, it inherits its parent’s default material. If no
material is associated with the parent actor (or if no parent actor exists) a default flat-
shaded grey material is used. The br_material data structure contains information
about the appearance of a surface — its colour, whether the finish is flat or Gouraud,
etc. The material data structure may reference a texture map. Texture mapping is
considered in more detail in Chapter 6. Fundamentally, it’s a process whereby a two-
dimensional pattern is wrapped around a three-dimensional model.

(ModelH Materi41—| Texture*

(Light]

[ModelH Materiz{-]—| Textur4 (ModelH Materi41—| Textur4

Figure 30 Models can reference materials and texture maps

This is how the world is represented in BRender —a tree of actors referencing models
that reference materials that reference texture maps.

BRender Data Types

BRender defines certain data type classes in order to ensure cross platform portability.
Macros are provided to convert standard C data types to appropriate BRender data

types.

The Registry

Some items used to describe actors are preprocessed by BRender to minimize
rendering time. These items are made available for such preprocessing by placing
them in the Registry. The Registry is a database that keeps track of registered items
(models, materials, texture maps and shade tables) and manages the resources used in
rendering,.

Registry operations are largely transparent to the user. However, it is important to
remember that actors, models, materials and pixel maps (described below) must be
registered before they can be used. They can then be referred to by name. A Registry
update should be performed whenever registered items are changed.

I
o

SETTING THE SCENE

I
[\

SETTING THE SCENE

BRender Program Structure
The structure of a typical BRender program is depicted below:
Initialise
User Code
Initialise BRender
Select and enable the Rendering Engine
Set up the World Database

Load/Create Models and associated Materials,
Texture Maps and Palettes (if using indexed
colour)

Define the relationships between actors — the
World Hierarchy

Event Loop

Alter scene description as necessary: move/
resize/delete Models etc.

Pass current scene description to the Rendering
Engine

Display the image returned by the Renderer.
User interaction
Terminate
Close the Rendering Engine
Close BRender
Close User Code

Conventions

Some function calls, particularly those concerned with /O operations, are platform
specific. When platform specific function calls are included in program listings in this
manual, they appear in italics. The sample programs on your Tutorial Programs disk
contain the appropriate format for your platform. Refer to these sample program
listings and to your installation guide for further details.

Getting 9
Started

I
=

GETTING STARTED

It’s time to write your first program. BRender supplies suitable default values, where
appropriate, for parameters not defined by the user. The colour of the default
material, for instance, is matt grey. The default camera actor is positioned at the origin
looking along the negative z-axis (in the camera’s co-ordinate system). The default
light actor is a direct light, with the light shining along its negative z-axis. BRender
even provides a default model actor — a cube.

These defaults are depicted in Figure 31.

position

X

Figure 31 BRender defaults

Note the camera position in the centre of the unit cube. To display the cube, either
the camera or the cube itself would need to be re-positioned.

The first program on your Tutorial disk is called BRTUTOR1 . C and is listed below.
Compile and run it to display a revolving grey cube. BRender programs don’t come
much simpler than this one. It accepts the defaults depicted above. However, the
camera is re-positioned along the positive z-axis so that the cube becomes visible. The
cube is then rotated 30° around the y-axis before being set in motion rotating around
the x-axis.

Let’s examine the program in detail.

Two fundamental BRender data structures are introduced in this program —
br_actor and br_pixelmap. Models, lights and cameras are described by means
of br_actor data structures. Note the widespread use of pointers. Most BRender
functions return pointers to data structures. Be careful to avoid type mismatches when
assigning variable values.

A br_actor data structure is really an index system — it contains pointers to other
structures that describe the properties of the relevant actor. br_pixelmap structures
contain information describing buffers, palettes and texture maps. Keep your
technical reference manual handy when working through the BRender programs
described in this guide. Familiarise yourself with BRender functions, data structures
and argument data types as they are introduced. You may also wish to consult relevant
BRender header files and to refer to the sample program listings on your Tutorial
Programs disk.

Recall the structure of a typical BRender program outlined in Chapter 1. The
Initialisation and Termination components of BRTUTORL . C are isolated below.

Initialisation and Termination

BrBegin must be called before most BRender functions can be used. BrEnd frees
internal resources and memory. These will normally be the first and last function calls
in your BRender programs.

BrBegin () ;

/*
* Initialise screen buffer and set up CLUT (ignored in true
colour)
*/
screen_buffer = DOSGfxBegin (NULL) ;
palette = BrPixelmapLoad("std.pal");
if(palette)
DOSGfxPaletteSet (palette);

/*
* Initialise Z-Buffer renderer
*/
BrZbBegin(screen_buffer->type,BR_PMT_DEPTH_16) ;

BrzbEnd () ;
DOSGfxEnd () ;
BrEnd () ;

[T
wn

GETTING STARTED

GETTING STARTEDI
=)

BRTUTOR1.C
/ *
* Program to Display a Revolving Illuminated Cube
*/
#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"
int main(int argc, char **argv)
{
/*
* Need screen and back buffers for double-buffering, a Z-Buffer to store
current
* depth information, and a storage buffer for the currently loaded palette
*/
br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette;
/ *
* The actors in the world: Need a root actor, a camera actor, a light actor,
* and a model actor
*/
br_actor *world, *observer, *light, *cube;
int i; /*counter*/

/*x*k*xkkxkx Tnitialise BRender and Graphics Hardware ***xkxxkkkkxkkxx /
/*
* Start BRender
*/
BrBegin();
/*
* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

/*
* Initialise Z-Buffer renderer
*/
BrZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);
/*
* Allocate back buffer and depth buffer
*/
back_buffer = BrPixelmapMatch (screen_buffer, BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch (screen_buffer,BR_PMMATCH_DEPTH_16);

/*************** Bulld the World Database **********************/

/*
* Start with None actor at root of actor tree and call it ‘world’
*/

world = BrActorAllocate (BR_ACTOR_NONE, NULL) ;

/*
* Add a camera actor as a child of None actor ‘World’
*/

observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA,NULL)) ;

/*
* Add, and enable, the default light source
*/
light = BrActorAdd(world,BrActorAllocate (BR_ACTOR_LIGHT,NULL));
BrLightEnable(light);
/*
* Move camera 5 units along +z axis so model becomes visible
*/
observer->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&observer->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),
BR_SCALAR(5.0));
/*
* Add a model actor: The default unit cube
*/
cube = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
/*
* Rotate cube to enhance visibility
*/
cube->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34RotateY (&cube—->t.t.mat, BR_ANGLE_DEG(30)) ;

/***************************** Animation Loop R I I I I I I I I I I I S I I I S I i 3

/*
* Rotate cube around the x-axis
*/
for (i=0; 1 < 360; i++) {
/*
* Initialise depth buffer and set background colour to black
*/

BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;
/*
* Render scene
*/
BrZbSceneRender (world, observer, back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
/*
* Rotate cube
*/
BrMatrix34PostRotateX (&cube—->t.t.mat, BR_ANGLE_DEG (2.0)) ;
}
/* Close down */

BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZbEnd () ;

BrEnd () ;

return 0;
}
BRTutorl.c

w
<

GETTING STARTED

I
R

GETTING STARTED

Platform specific code, omitted from the program listings in this tutorial, is required
to initialise display hardware, colour buffers and palettes. Sample hardware
initialisation code is included in the program listings at the back of your platform-
specific installation guide, and in the sample programs on your Tutorial Programs
disk. In general, this sample code contains generic examples of how screen handling
operations may be implemented on your platform. You may decide to optimize this
code for your own purposes, or substitute your own screen handling and I/O routines.

The sample initialisation code listed above illustrates how a DOS-based application
might initialise the graphics hardware. This code is discussed below, for illustrative
purposes. If you are not running BRender x86 under DOS, refer to your installation
guide and to the sample program listings on your Tutorial Programs disk.

A number of screen handling functions are provided for use with DOS-based BRender
applications. These functions are provided to simplify graphics hardware initialisation
and are documented in the BRender x86 Installation Guide.

DosGfxBeginand DosGfxEnd are used to initialise the graphics hardware.
DOSGfxBegin expects a character string argument in the following format:
VESA/MCGA, [W:<width>], [H:<height>], [B:<bits/pixel>]

The default string MCGA, W:320,H: 200, B: 8 is assumed if NULL is passed as an
argument to DOSGfxBegin (and the BRENDER_DOS_GFX environment variable has
not been set). BRender x86 v1.2 supports 15- and 24-bit true colour, as well as 8-bit
indexed colour.

If you don’t know which graphics screen modes are supported by your system, run
VESAQ.EXE, BRender’s hardware interrogation utility for DOS based systems. This
utility, located in the Tools directory, interrogates your video circuitry before
displaying a list of the video modes supported by your system.

If NULL is passed as an argument to DOSGfxBegin, the screen mode can be altered
after compilation by setting the BRENDER_DOS_ GFX environment variable. For
example, type:

SET BRENDER_DOS_GFX=VESA,W:640,H:400,B:8

followed by Return to select the 640 x 400, 8-bit VESA standard (assuming your video
card supports this mode). Now run BRTUTOR1 . C again. Notice that the program runs
much slower at this higher screen resolution and that the quality of the image has
improved (the ‘staircase’ effect at the edges of the cube is not as pronounced). Real-
time rendering always involves a trade-off between image quality and speed.

To revert to the original screen mode in DOS type:

SET BRENDER_DOS_GFX=MCGA,W:320,H:200,B:8

followed by Return. Experiment with the screen modes available to you. In general,
the lower the resolution the faster your animation will run. You may specify simply
MCGA or VESA and BRender will select appropriate arguments for W, H and B.

DOSGEfxBegin returns a pointer to a pixel map that references the screen. This pointer
is assigned here to screen_buf fer. This pixel map could be a hardware screen
buffer mapped directly to the screen or a pixel map set up by BRender to simulate a
hardware screen buffer. Either way, from the application programmer’s point of view,
the contents of this buffer are displayed on screen.

When rendering in 8-bit indexed colour mode, a colour palette must be loaded into the
hardware palette (or CLUT). BrPixelmapLoad loads a pixel map from a specified
file into memory. DOSfxPaletteSet copies the contents of a pixel map to the
hardware palette. The initialisation code listed above loads the colour palette supplied
with BRender, std.pal, into memory, then copies it to the hardware palette.

BrzbBegin is used to select and initialise the Z-Buffer renderer. Br ZbEnd closes it
down. Remember that a BRender scene description is designed to be independent of
a particular rendering environment. This means that porting a BRender program
between platforms that support different rendering engines can be accomplished by
changing a couple of lines of code — in this case BrZbBegin and BrzZbEnd. Refer to
your installation guide for details of the rendering options available.

The renderer needs to know the ‘type’ of buffer it will be rendering into — whether it
contains indexed or true colour information and the number of bits per pixel. It also

needs to know the depth of the Z-Buffer. This information is passed to BrZbBegin.

BRTUTORL . C contains additional initialisation code shown in the program extract
below.

BrBegin () ;

screen_buffer = DOSGfxBegin (NULL) ;
palette = BrPixelmapLoad("std.pal");
if(palette)

DOSGfxPaletteSet (palette);

BrZbBegin(screen_buffer->type, BR_PMT_DEPTH_16) ;

/ *
* Allocate back buffer and depth buffer
*/
back_buffer = BrPixelmapMatch (screen_buffer,
BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch (screen_buffer,
BR_PMMATCH_DEPTH_16) ;

w
|ii|

GETTING STARTED

BrZbEnd () ;
DOSGfxEnd () ;
BrEnd () ;

Before initialisation is complete, we must create a back buffer in the image of the
screen buffer to facilitate double-buffering. Since we’re using the Z-Buffer renderer,
we also need a depth buffer of the same width and height. BrPixelmapMatch takes
care of this. BR_PIXELMAP_OFFSCREEN tells it to replicate the screen buffer.
BR_PMMATCH_DEPTH_16 tells it to create a 16-bit depth, or Z-, buffer, of the same
width and height as the screen buffer.

The initialisation procedure introduced above could be used as a general purpose
template for initialising BRender programs. You may well find yourself writing many
BRender programs without making significant alterations to this sequence of function
calls. Indeed, you are unlikely to alter any of this code unless you are selecting a
different renderer or changing the graphics screen mode. Take time to familiarise
yourself with the function calls and data structures introduced above. They are the
foundations upon which your conceptual model of BRender will be builc.

) Setting up the World Database

GETTING STARTED

Having initialised BRender, we must build the world database. The information
contained here defines the shape, colour and texture of the models in a scene, as well
as how they are related to one another in the world hierarchy. It also describes how the
scene is lit and how much of it is initially ‘visible’.

Remember we build scenes using actors — camera actors, light actors, model actors.
Another actor type, the None actor, is used as a reference point for scene building — it
is used to structure the world database. A none actor is usually found at the root of an
actor tree hierarchy.

BrActorAllocate allocates, or assigns, a new actor to the world database.
BrActorAdd declares one allocated actor to be the child of another (and returns a
pointer to the child actor). This is how actor hierarchies are constructed.

BRTUTORL1 . C starts with a none (or ‘root’) actor called ‘world’,
world = BrActorAllocate (BR_ACTOR_NONE,NULL) ;
It adds a model actor (the default cube) as a child of ‘world’ and calls it ‘cube’,
cube = BrActorAdd (world,BrActorAllocate (BR_ACTOR_MODEL, NULL)) ;
then adds a camera actor, also a child of ‘world’, and calls it ‘observer’,

observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA,
NULL)) ;

before adding and ‘turning on’ the default light source,

light = BrActorAdd(world,BrActorAllocate (BR_ACTOR_LIGHT,NULL));
BrLightEnable (light);

A simple renderable world tree has been created:

Figure 32 Four-actor world tree

The world database now consists of —
a matt-grey unit cube positioned at the origin
a camera or view position, also located at the origin
an infinitely distant direct light source positioned directly behind the view posi-

tion.
This is the default condition depicted in Figure 31.

In order to make the cube visible we move, or translate, the camera position 5 units
backwards along the positive z-axis:

observer->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&observer—->t.t.mat, BR_SCALAR(0.0),
BR_SCALAR(0.0),
BR_SCALAR(5.0));

Note that the first line of the above code could have been omitted, as
BR_TRANSFORM_MATRIX34 is the default transformation type.

Note that BRender uses a custom data type, br_scalar, to represent scalar values —
it doesn’t use the standard data types int and float . BR_SCALAR (), implemented as
a macro, converts constants to the br_scalar data type.

We then rotate the cube 30° around the y-axis (to accentuate its shape):

cube->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34RotateY (&cube->t.t.mat, BR_ANGLE_DEG(30));

BR_ANGLE_DEG () converts between degrees and BRender’s angle representation
br_angle. Before moving an actor, a transformation type must be defined. Refer to
your technical reference manual for a list of the transformation types available.

I
ury

GETTING STARTED

GETTING STARTED!
(%)

Animation Loop

The code that generates the animation (in this case 360 frames), is listed below.

The back buffer is initialised to the background pixel value.
BrPixelmapFill (back_buffer, 0) fills the back buffer with 0’s, setting the
background pixel colour to black.

The Z-Buffer is then initialised to the largest representable z-value. This is OxXFFFF
for a 16-bit buffer. 0OxFFFFFFFF is passed to accommodate Z-Buffer depths up to 32
bits.

for (i=0; 1 < 360; i++) {
BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;
BrZbSceneRender (world, observer, back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateX (&cube->t.t.mat, BR_ANGLE_DEG (2.0)) ;
}

BrZbSceneRender renders the scene into back_buffer.
BrPixelmapDoubleBuffer then ‘swaps’ screen_buffer and
back_buffer (see section on ‘Double Buffering’ in Chapter 1) so the newly
rendered image is displayed.

For each iteration of the loop, cube is rotated 2° about the x-axis.

More About Background Colour

In 8-bit colour mode, 256 colours are available at any time. Which 256 colours are
available is determined by the contents of the hardware palette (or CLUT). In this
case, the palette supplied with BRender (std.pal) has been loaded into the CLUT.

The 256 colours in std.pal are divided into seven ranges, or ‘colour ramps’. The
first 64 colours represent shades of grey ranging from very dark grey (black) to very
light grey (white). The following colours are 32-element ramps for six colours as
shown below.

Colour Ramps in

std.pal
Range Colour
0-63 Grey
64-95 Blue

96-127 Green
128-159 Cyan
160-191 Red
192-223 Magenta
224-255 Yellow

BrPixelmapFill (back_buffer, 0) sets the background to black. The
background colour can easily be changed. In std.pal, colour 88 is a deep blue.
Substitute 88 (or 0x55) for 0 in the above function call to change the background
colour to blue. If you would prefer a red background, try 180 (0xB4).

Note that in 8-bit colour mode, only the least significant 8 bits of information in the
colour argument are used by BrPixelmapFill to determine the colour —all others
are ignored. So OxFF is taken as white, as is OxXFFFFFFFF or 0x123FF or 255.
0xFFFFFFO00, 0 and 256 are all black.

In true-colour mode, either 15-, 16-, 24- or 32- bit colour information is assumed (refer
to your installation guide for details of which colour modes are supported by your
version of BRender). In 15-bit colour mode, five bits are used for each of the R, G and
B components of a pixel’s colour — the least significant five bits for blue, the most
significant five bits for red. 0x1F therefore represents fully saturated blue. Try setting
the background to blue using this value. Remember to select 15-bit colour mode. If
you are running BRender under DOS, for instance, you could substitute an
appropriate string (e.g. VESA,W:320,H:200,B:15) in place of NULL in
DOSgfxBegin (NULL) or set the BRENDER_DOS_ GFX environment variable. Use
0x1F<<5 to change the background to green, or 0x1F<<10 to change it to red.

I
w

GETTING STARTED

Positioning 3
Actors

POSITIONING ACTORS !

In chapter two, you were introduced to your first BRender program. You now know
how to display a revolving grey cube! No doubt you are anxious to expand your
BRender repertoire. You will be pleased to know that this will not be as difficult as
you might have expected. You have already learnt the fundamentals. By the time you
have worked through the following short chapters, your ability to produce complex 3D
applications will be limited only by your imagination and the extent of your C
programming skills. This chapter is devoted to 3D transformations — placing and
moving models in a 3D scene.

The fundamental transformations: Translation, Rotation and Scaling, were
introduced in Chapter 1. These can be represented in a number of different ways. In
fact six different transformation types are available in BRender.

The simplest is the Identity Transform, which specifies the identity matrix as
the transformation matrix. The identity matrix does not alter an actor’s shape or
position. It makes an actor effectively share its parent’s co-ordinate space. The
Translation transformation is used to implement a translation (useful when no
rotation or scaling are involved in a transformation). The Translation transformation
type is represented in BRender as a vector that is added to an actor’s co-ordinates.
Euler, Look-Up and Quaternion transformations all specify a translation and
an orientation.

The Euler transform applies three separate rotations in turn, in a specified order.
Euler angles are the generalisation of the pitch-yaw-and-roll of flight simulators.

A look-up transformation is a convenient method of making an actor, often a camera
actor, point towards a particular position. A look vector is used to specify the view
direction, and an up vector to define the orientation.

The unit quaternion transform represents a rotation about an arbitrary vector.
Quaternions are used in computer animations for interpolating the positions of
tumbling bodies between key frames.

The most general representation is the Matrix Transform
(BR_TRANSFORM_MATRIX34). All the transformation types discussed above can be
implemented using matrices (refer to Chapter 1 of this guide and to br_matrix34
in your technical reference manual for details of how matrix transforms are
performed). You will recall from Chapter 1 that matrices can be concatenated,
allowing a complex sequence of transformations to be pre-processed into a single
transformation matrix. Not surprisingly then, computer graphics systems normally
represent transformations internally using matrices.

The transformations implemented in our tutorial programs use the
BR_TRANSFORM_MATRIX34 representation. Feel free to experiment with the other
available implementations. Refer to your technical reference manual for details of
relevant structures and data types.

Your Second Program

The remainder of this chapter is devoted to demonstrating how to implement
translation, rotation, and scaling transformations. BRTUTOR1 . C (remember the
revolving grey cube) is used as a template. By the end of the chapter, BRTUTOR1 . C
will have evolved into BRTUTOR2. C, a copy of which is included on your Tutorial
Programs disk. You may wish to monitor your progress by editing a copy of
BRTUTORL1. C as we go along. This will allow you to compile and run the program at
appropriate stages in its evolution. What better way to familiarise yourself with
BRender functions than to experiment with them as they are introduced?

When complete, this program will display three models —a box, a sphere and a torus.
The actor declarations are thus,

br_actor *world, *observer, *box, *sphere, *torus;

The camera position is moved 10 units backwards along the positive z-axis, instead of
five as previously (the cube will appear smaller). The size of the view volume is
increased by moving the yon-plane further away from the view position.

observer->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&observer->t.t.mat, BR_SCALAR(0.0),
BR_SCALAR(0.0),
BR_SCALAR(10.0));
camera_data = (br_camera *)observer->type_data;
camera_data->you_z = BR_SCALAR(50);

Note the explicit cast conversion. Some actors, including camera actors, may have
dynamically allocated type-specific data attached. The revised view volume is
depicted in Figure 33.

I
3

POSITIONING ACTORS

POSITIONING ACTORS !

BRTUTOR2.C
/*
* Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.
* Program to Display a scene containing a Box, a Sphere and a Torus
*/
#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"
int main(int argc, char **argv)
{
br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette;
br_actor *world, *observer, *light, *box, *sphere, *torus;
int 1i;
br_camera *camera_data;

[x**Fxxxk%xx Initialise BRender and Graphics Hardware ***x*#kxx&sk/
BrBegin();
/*

* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrZbBegin (screen_buffer->type, BR_PMT_DEPTH_16);
back_buffer = BrPixelmapMatch(screen_buffer, BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch (screen_buffer, BR_PMMATCH_DEPTH_16);

/*************** Bulld the World Database **********************/
/*
* Start with None actor at root of actor tree and call it ‘world’
*/
world = BrActorAllocate (BR_ACTOR_NONE, NULL) ;

/*

* Add, and enable, the default light source

*/
light = BrActorAdd(world,BrActorAllocate (BR_ACTOR_LIGHT,NULL)) ;
BrLightEnable(light);

/*

* Load and Position Camera

*/
observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA, NULL)) ;
observer->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&observer—->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),

BR_SCALAR(10.0));

camera_data = (br_camera *)observer->type_data;
camera_data->you_z = BR_SCALAR(50);

/*

* Load and Position Box Model

*/
box = BrActorAdd (world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
box->t.type = BR_TRANSFORM_MATRIX34;

BrMatrix34RotateY (&box—->t.t.mat, BR_ANGLE_DEG(30));
BrMatrix34PostTranslate (&box—>t.t.mat, BR_SCALAR(-2.5),BR_SCALAR(0.0)
BR_SCALAR(0.0)
BrMatrix34PreScale (&box->t.t.mat, BR_SCALAR(2.0),BR_SCALAR(1.0),
BR_SCALAR(1.0));
/*
* Load and Position Sphere Model
*/
sphere = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
sphere->model = BrModelLoad("sph32.dat");
BrModelAdd (sphere->model) ;
sphere->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&sphere->t.t.mat, BR_SCALAR(2.0),BR_SCALAR(0.0),
BR_SCALAR(0.0));
/*
* Load and Position Torus Model
*/
torus = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL, NULL)) ;
torus->model = BrModelLoad("torus.dat");
BrModelAdd (torus—->model) ;
torus—->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&torus—->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),
BR_SCALAR(3.0));

/********************** Animation Loop ***********************/
for (i=0; i < 360; i++) {

BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;
BrZbSceneRender (world, observer, back_buffer,depth _buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateX (&box->t.t.mat, BR_ANGLE_DEG(2.0)
BrMatrix34PreRotateZ (&torus—->t.t.mat, BR_ANGLE_DEG (4.0
BrMatrix34PreRotateY (&torus->t.t.mat, BR_ANGLE_DEG (-6.
BrMatrix34PreRotateX (&torus—->t.t.mat, BR_ANGLE_DEG (2.0
BrMatrix34PostRotateX (&torus—>t.t.mat, BR_ANGLE_DEG (1.
BrMatrix34PostRotateY (&sphere->t.t.mat, BR_ANGLE_DEG (0.8

)i
)i
0));
)) i
0)):
)) i
/*

* Close down

*/
BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZbEnd () ;

BrEnd () ;
return 0;

}
BRTUTOR2.C

) ;

’

POSITIONING ACTORSi

wn
<

POSITIONING ACTORS

Figure 33 Revised view position and view volume

The following code loads and positions the cube or ‘box’:

box = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
/*Define box's transformation*/
box->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34RotateY (&¢box—>t .t .mat, BR_ANGLE_DEG(30)) ;
BrMatrix34PostTranslate (&§box—->t .t .mat,BR_SCALAR(-2.5),
BR_SCALAR(1.0),
BR_SCALAR (1
.0));

The changes made to BRTUTOR1 . C so far are highlighted in bold. If you were to
implement these changes and re-compile the program, a revolving grey cube would
be displayed close to the left edge of the screen.

Transformation Function

Remember that matrix multiplication is non-commutative. The order in which
transformations are applied is critical. Three families of calls are provided for
implementing transformations. The standard implementation,

BrMatrix34Translate ()
BrMatrix34Rotate ()
BrMatrix34Scale ()

sets a target matrix to a matrix representing a translation, rotation or scaling.
The ‘Pre-’ family of transformation function calls,

BrMatrix34PreTranslate ()

BrMatrix34PreRotate ()

BrMatrix34PreScale ()
pre-multiplies a target matrix by a matrix representing a translation, rotation or
scaling, and puts the result back in the target matrix.

The ‘Post-’ family of transformation function calls,

BrMatrix34PostTranslate ()

BrMatrix34PostRotate ()

BrMatrix34PostScale ()
post-multiplies a specified matrix by a matrix representing a translation, rotation or
scaling, and puts the result back in the specified matrix.

Use the standard calls to initialise a matrix to represent a specified transformation.

Given a matrix representing a transformation, or series of transformations, use the
‘Pre-’ family of calls to add an additional transformation at the beginning.

Given a target matrix representing a transformation, or series of transformations, use
the ‘Post-’ family of calls to append a transformation at the end.

Consider the ‘box’ transformation above — a rotation followed by a translation. If we
neglected to specify a ‘Post-’ translation,

BrMatrix34RotateY (&box->t.t.mat, BR_ANGLE_DEG(30)) ;
BrMatrix34Translate (&box—->t.t.mat,BR_SCALAR(-2.5),BR_SCALAR(0.0),
BR_SCALAR(0.0))

i
the rotation would not be implemented. We would simply get a translation in X, as the
rotation matrix has been replaced by the translation matrix.

Consider what would happen if we reversed the order,

BrMatrix34Translate (&box—>t.t.mat, BR_SCALAR(-2.5),BR_SCALAR(0.0),
BR_SCALAR(0.0))

9]
POSITIONING ACTORSI

wn
|!!|

POSITIONING ACTORS

BrMatrix34PostRotateY (&box—>t.t.mat, BR_ANGLE_DEG(30)) ;

to give a translation followed by a rotation. The box would be translated in x, before
being rotated around the y-axis.

z

Figure 34 Rotation follows Translation

If this code were substituted in BRTUTOR2 . C, the resulting animated sequence would
be very different from that generated by the original program. Note that the following
code would produce exactly the same result,

BrMatrix34RotateY (&box->t.t.mat, BR_ANGLE_DEG(30)) ;
BrMatrix34PreTranslate (&box->t.t.mat, BR_SCALAR(-2.5),BR_SCALAR
(0.0),
BR_SCALAR(O.
0));

a translation followed by a rotation. Try out these and other variations for yourself. A
little experimentation at this stage could pay dividends later.

Let’s apply a scaling transformation to change the shape of the box from a cube to a
rectangle.

BrMatrix34RotateY (&box—>t.t.mat, BR_ANGLE_DEG(30)) ;
BrMatrix34PostTranslate (&box->t.t.mat, BR_SCALAR(-2.5),BR_SCALAR
(0.0),
BR_SCALAR(O
.0));
BrMatrix34PreScale (&box->t.t.mat,BR_SCALAR(2.0) ,BR_SCALAR(1.0),
BR_SCALAR(1.0));

We called the ‘Pre-’ scaling function because we wanted the scaling transformation to
be applied to the box before it was positioned in the scene. The above scaling
multiplies the x-components of the box’s vertices by 2.

Note that, had we specified ‘Post-’ scaling, the translation factor would have been
scaled along with the vertices. In this case, the previously specified translation factor
(=2.5) would have been doubled (to -5). You are again invited to experiment.

Adding the Sphere and Torus

At this stage our program displays a scaled ‘box’ near the left edge of the screen,
revolving around the x-axis. Let’s introduce the other models, starting with the
sphere.

/*Load and Position Sphere Model*/
sphere = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
sphere->model = BrModelLoad ("sph32.dat");
BrModelAdd (sphere->model) ;
sphere->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&sphere->t.t.mat, BR_SCALAR(2.0),
BR_SCALAR(0.0),
BR_SCALAR(0.0

)) i
The first line of this code adds a new model actor to the database, as a child of ‘world’,

and calls it ‘sphere’. If you want to display a model other than the default cube, you
must first load it from a model data file,

sphere->model = BrModelLoad ("sph32.dat");
then add it to the registry,
BrModelAdd (sphere->model) ;

Remember that actors, models, materials and pixel maps must be added to the registry
before they can be used. Model descriptions are stored in .dat files. A number of
sample model files are contained on your Tutorial Programs disk (all with .dat
extensions). You can create your own models in 3D Studio, then convert them to
BRender .dat format using the supplied utilities 3DS2BR and GEOCONV.
3DS2BR converts 3D Studio models stored as . 3ds binary files while GEOCONV
handles ASCII (. asc) files.

The ‘sphere’ is translated in x to position it closer to the right hand edge of the screen.
Note that the line

sphere->t.type = BR_TRANSFORM_MATRIX34;

could have been omitted as BR_TRANSFORM_MATRIX34 is the default transformation
type.

A ‘torus’ model is added and translated in z to bring it closer to the view position.

/*Load and Position Torus Model*/
torus = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
torus->model = BrModelLoad("torus.dat");

9]
w

POSITIONING ACTORS

wn
=

POSITIONING ACTORS

BrModelAdd (torus->model) ;
torus->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&torus—->t.t.mat, BR_SCALAR(0.0),
BR_SCALAR(0.0),
BR_SCALAR(3.0)
)i

If you add the above code and re-compile the program, a torus will be displayed in the
centre of the screen — flanked on one side by a revolving rectangle and on the other
by a sphere.

The Animation Loop

Let’s complete the animation. The revised animation loop is given below, with
additional code highlighted:

for (i=0; 1 < 360; i++) {

BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;
BrZbSceneRender (world, observer, back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateX (&box->t.t.mat, BR_ANGLE_DEG(2.0));
BrMatrix34PreRotateZ (&torus->t.t .mat, BR_ANGLE_DEG(4.0));
BrMatrix34PreRotateY (&torus->t.t .mat, BR_ANGLE_DEG(-6.0));
BrMatrix34PreRotateX (&torus->t.t.mat, BR_ANGLE_DEG(2.0));
BrMatrix34PostRotateX (&torus—->t.t.mat,BR_ANGLE_DEG(1.0));
BrMatrix34PostRotateY (&sphere->t.t.mat, BR_ANGLE_DEG(0.8));
}

Lets consider the torus. For each iteration of the loop, the specified PreRotations are
added at the beginning of the transformation series (so they are implemented before
the translation), and the PostRotation is added at the end. The concatenated matrix
thus represents rotations in x, y and z (4°, —=6°, and 2° respectively), followed by the
compound transformation defined by the previous concatenation which is then
followed by a 1° rotation in x.

The sphere is PostRotated in y. Since it had been previously translated +2 units in x,
it circles the y-axis in a broad sweep.

BRTUTORL1.C has evolved into BRTUTOR2.C.

SHOLDYV ONINOILISOd

w
w

\o
wn

SHOLIDYV DNINOILISOd

Actor 4
Hierarchies

wn
=)

ACTOR HIERARCHIES

The animations we have created up to now have described uncomplicated scenes
containing basic geometric shapes, each individually specified and positioned. Now,
consider how much more difficult it would be to describe a complex 3D animation
containing spatially interdependent models — say a representation of our solar system.
How would you describe the path of the Moon orbiting the Earth, which in turn orbits
the Sun? Or the motion of the hands of a clock located inside a space ship hurtling
through space?

Complex models or scenes are constructed as actor hierarchies. A hierarchy allows you
to think of an actor in terms of its spatial relationship to another, parent, actor. An actor
hierarchy can can then be broken down into a series of fairly simple spatial
relationships, or transformations, between actors.

A hierarchical model of part of our solar system is represented in Figure 35.

| Moon| | Moon || Moon| | Moon|

Figure 35 Hierarchical model of solar system

The motion of the Moon can be described relative to the position of the Earth, and
that of the Earth relative to the position of the Sun. If we can keep track of the motion
of the Moon relative to the Earth and of the motion of the Earth relative to the Sun,
then the Moon’s path through space can be computed. The position of the Moon at
any time can be described by the concatenation of a series of matrices representing
relative displacements, or transformations.

BRTUTOR3. C implements a simple three-layer hierarchical tree structure. Compile
and run it to create a ‘satellite’ orbiting a ‘moon’ orbiting a ‘planet’ animation.

Note that ‘moon’ is defined as a child of ‘planet’,
moon = BrActorAdd(planet,BrActorAllocate (BR_ACTOR_MODEL,NULL));
and ‘satellite’ is defined as a child of ‘moon’,

satellite = BrActorAdd (moon,BrActorAllocate (BR_ACTOR_MODEL,
NULL)) ;

The actor hierarchy depicted in Figure 36 results.

Universe

(Light] (Planet]

Satellit¢

Figure 36 Planet, Moon, Satellite actor hierarchy

All three models are created using the same model data file, sph16.dat, in which a
number of triangular polygons are combined to approximate the surface of a sphere. A
more accurate approximation could be obtained using sph32.dat or

sph4096 .dat. Substitute sph8.dat for a cruder approximation. As always, you’ll
find there’s a trade-off between speed and image quality.

The ‘universe’ (or root actor) co-ordinate system serves as an absolute frame of
reference within the application and could be thought of as ‘World Space’ (or the
application coordinate system).

The ‘planet’ is transformed into its parent co-ordinate system (‘World Space’). The
identity transform is assumed, since no transformation has been explicitly defined.
Note that the camera has been translated 6 units along the positive z-axis to ensure
that the ‘planet’ is visible.

The ‘moon’ is uniformly scaled before being translated +2 units in z, in the
planet’s co-ordinate system. Since the camera has been translated +6 units
in z the net result, as far as the viewer is concerned, is to position the ‘moon’ between
the view position and the planet.

9]
3

ACTOR HIERARCHIES

ACTOR HIERARCHIESI
=}

BRTUTOR3.C

/*

* Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.
* Program to Display Planet, Moon Satellite Animation.

*/

#include <stddef.h>

#include <stdio.h>

#include "brender.h"

#include "dosio.h"

int main(int argc, char **argv)

{
br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette;
br_actor *universe, *observer, *light, *planet, *moon, *satellite;
int i;
br_camera *camera_data;

[xFAFFxxAFFxxAx Initialise BRender and Graphics Hardware ***kxxxsdxxsdk/
BrBegin();
/*
* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);

back_buffer = BrPixelmapMatch(screen_buffer, BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch (screen_buffer, BR_PMMATCH_DEPTH_16);

/*************** Bulld the World Database *****************/
/*
* Load Root Actor
*/
universe = BrActorAllocate (BR_ACTOR_NONE,NULL) ;
/*
* Load and Enable Default Light Source
*/
light = BrActorAdd(universe,BrActorAllocate (BR_ACTOR_LIGHT,NULL)) ;
BrLightEnable(light);
/*
* Load and Position Camera
*/
observer = BrActorAdd(universe,BrActorAllocate (BR_ACTOR_CAMERA,NULL)) ;
observer->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&observer—->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),
BR_SCALAR(6.0));

camera_data = (br_camera *)observer->type_data;
camera_data->you_z = BR_SCALAR(50);

/*

* Load Planet Model

*/

planet = BrActorAdd(universe,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
planet->model = BrModelLoad("sphl6.dat");

BrModelAdd (planet->model) ;

/*

* Load and Position Moon Model

*/

moon

moon-—

= BrActorAdd(planet,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
>model = BrModelLoad("sph8.dat");

BrModelAdd (moon->model) ;

moon-—

>t.type = BR_TRANSFORM_MATRIX34;

BrMatrix34Scale (&moon—->t.t.mat, BR_SCALAR(0.5),BR_SCALAR(0.5),

BR_SCALAR(0.5));

BrMatrix34PostTranslate (&moon—->t.t.mat, BR_SCALAR(0.0),BR_SCALAR (0.0),

/*

BR_SCALAR(2.0));

* Load and Position Satellite Model

*/

satellite = BrActorAdd (moon,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
satellite->model = BrModelLoad("sph8.dat");

BrModelAdd (satellite—->model) ;

satellite->t.type = BR_TRANSFORM_MATRIX34;

BrMatrix34Scale (&satellite—->t.t.mat, BR_SCALAR(0.25),BR_SCALAR (0.25),

BR_SCALAR(0.25));

BrMatrix34PostTranslate (&satellite->t.t.mat, BR_SCALAR(1.5),BR_SCALAR(0.0),

BR_SCALAR(O.

/********************** Animation Loop ***********************/

for(i=0; 1 < 1000; i++) {

}

}
/*

BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;
BrZbSceneRender (universe, observer, back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PreRotateY (&planet->t.t.mat, BR_ANGLE_DEG(1.0));
BrMatrix34PreRotateY (&satellite—->t.t.mat, BR_ANGLE_DEG(4.0)) ;
BrMatrix34PreRotateZ (&moon->t .t .mat, BR_ANGLE_DEG(1.5));
BrMatrix34PostRotateZ (&satellite->t.t.mat, BR_ANGLE_DEG (-2

.5));
BrMatrix34PostRotateY (&moon—->t.t.mat, BR_ANGLE_DEG (-2.0));

* Close down

*/

BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZbEnd () ;

BrEnd () ;
return 0;

BRTUTOR3.C

0));

7]
o

ACTOR HIERARCHIES

ACTOR HIERARCHIES!

The satellite is also uniformly scaled before being translated +1.5 units in x, in the
moon’s co-ordinate system. From the viewer’s perspective, (at x=0, y=0,
z=6) in ‘World Space’, the satellite is initially centred at (1.5, 0, 2). The first frame
rendered is depicted below.

(0,0,6)

Figure 37 First frame
In the animation loop, PreRotate functions are used to set the planet and satellite

rotating about their own y-axes, and the moon revolving around its own z-axis.

BrMatrix34PreRotateY (&planet->t.t.mat, BR_ANGLE_DEG(1.0));
BrMatrix34PreRotateY (&satellite—->t.t.mat, BR_ANGLE_DEG(4.0));
BrMatrix34PreRotateZ (&moon->t.t.mat, BR_ANGLE_DEG(1.5));

The satellite is rotated to trace an orbit around the moon’s z-axis. Note that the
satellite’s transformation is applied in the moon’s co-ordinate space, not in “World
Space’.

BrMatrix34PostRotateZ (&satellite->t.t.mat, BR_ANGLE_DEG(-2.5));

The moon (and ‘attached’ satellite) is rotated to trace an orbit around the planet’s y-

axis.
BrMatrix34PostRotateY (&moon->t.t.mat, BR_ANGLE_DEG(-2.0));

To place either the moon or the satellite in geostationary orbit, simply delete the
appropriate rotate command.

Feel free to experiment with this program and with BRTUTOR4 .C. BRTUTOR4.C
creates another planet-satellite animation using hierarchical models.

Adding 5
Colour

=
|!I|

ADDING COLOUR

A ‘material’ may be explicitly assigned to a model actor or to each face on a model. A
material describes the appearance of a surface — its colour and texture, whether it’s
shiny or dull, smooth or rough, etc.

For each face on a model, BRender looks for an associated material. If none has been
specified (or the associated material is not found in the registry), the model actor’s
material is assumed. If a material has not been assigned to the model actor, it inherits
its parent’s material. If the parent actor, or a previous ancestor, has not been assigned
a material, a flat-shaded grey material is used by default.

The default material has been used with all the models you have displayed so far.
Let’s design a material and apply it to the revolving grey cube of BRTUTOR1 . C.

The information describing a material is stored in a br_material data structure.
Refer to your technical reference manual for details of br_material.

Care should be taken when initialising data structures statically, as only public
members of BRender data structures are documented in the technical reference
manual.

A custom function, BrFmtScriptMateriallLoad, is provided for loading material
descriptions from a script file. A material script file is a text file as in the following
example:

sample material script file

Comment

#

Fields may be specified in any order, or omitted

Where fields are omitted, sensible defaults will be supplied
Extra white spaces are ignored

material = [

identifier = "block";

flags = [light,prelit, smooth, environment,
environment_local, perspective,decal,
always_visible, two-sided, force_z_01];

colour = [0,0,255];

ambient = 0.05;

diffuse = 0.55;

specular = 0.4;

power = 20;

map_transform = [[1,0], [O,1], [0,011;
index_base = 0;

index_range = 0;

colour_map = "brick"

index_shade = "shade.tab"

The fields in the script file relate directly to br_material fields. Refer to your
technical reference manual for futher details. Note that all material flags would never
be set at the same time, as they are in the above example. They are shown here to
illustrate how material flags are specified in script files.

The script file used to determine the appearance of the revolving cube in
BRTUTORS5.C is called cube .mat and is included on your Tutorial Programs disk.

cube .mat

This material script file describes the appearance
of the material "BLUE MATERIAL"

material = [
identifer = "BLUE MATERIAL";
colour = [0,0,255];
ambient = 0.05;
diffuse = 0.55;

specular = 0.4;
power = 20;
flags = [light, smooth];

1

A script file may contain a number of material descriptions. The identifier field allows
you to specify a name by which each loaded material is subsequently known. When
you want to assign a particular material to a model, you simply instruct BRender to
find it by name before completing the assignation.

The material colour is pure blue (both red and green components are 0).

There are a number of material properties, besides colour, that determine how a

surface will appear under given lighting conditions — whether it will appear rough or

smooth, shiny or dull etc.
Ambient light is the general ‘atmospheric’ light that is not associated with a
specific light source. In a real scene it is background light generated by reflection
from other surfaces, for example a bright (but cloudy) summer day would have a
large amount of ambient light, whereas a moonlit scene would have practically
none. In 3D graphics, ambient light illuminates an object with a uniform light
which does not come from any specific direction, but rather all directions at once.
As the ambient light is not dependent on the presence of light sources, an object
with a high ambient lighting value in a dark unlit scene will appear to glow.
Diffuse light is the light from a directional source which has been reflected
equally in all directions from the surface of an object. The apparent brightness of
a surface is independent of the position of the observer as it depends only on the
angle between the surface of the object and the direction of the incident light.
The closer the object surface and incident light are to being perpendicular, the
brighter the diffuse lighting will be. An object with faces at different angles will

|i||
w

ADDING COLOUR

ADDING COLOUR!

reflect varying intensities of light and hence have shading effects.

Specular light is the effect that produces the highlights that can be seen on a
shiny surface, for example as seen on a polished apple illuminated with a bright
white light. Shiny metals or plastics have a high specular component but carpet or
chalk have none. If the observer moves so does the position of the highlight on
the object. The highlight is effectively the reflection of the light source in the
surface of the object. Specular lighting depends on the angle between the line of
sight of the observer and the direction of the incident light.

The ambient, diffuse and specular fields are used to specify, respectively, the ka, kd
and ks members of the br_material data structure. Each ranges between 0 and 1,
and the three should sum to 1. An additional field, power, determines how sharp
highlights will appear. A more detailed discussion of material properties can be found
in your technical reference manual (see br_material).

The most commonly specified flags are 1ight and smooth. Light specifies that
lighting effects should be taken into account when rendering. Smooth specifies
Gouraud shading. The polygons that make up the surface of a model can be drawn
with a single colour (flat shading) or with many colours (smooth or Gouraud shading).
With flat shading, the colour of a single vertex is calculated and duplicated across the
entire polygon. With smooth shading, the colour at each vertex is computed and colour
values for the interior of the polygon interpolated linearly between the vertex colours.
In our present example, if we hadn’t specified smooth shading, each face on the cube
would have been drawn using a single colour. With smooth shading a more realistic
effect is achieved through interpolation.

For a demonstration of flat shading, simply remove ‘smooth’ from the flag field in the
text file cube.dat and run the program again. This is the major advantage of using
script files to define material properties; any of these properties can be changed, and
the result viewed, without having to re-compile the program. Simply edit the script
file as necessary. This makes it easy to experiment with different colour values,
specular/diffuse/ambient properties and shading techniques.

The Program

Compile and run BRTUTORS. C to display a revolving blue cube. Note the selected
true colour mode. If you are running BRender under DOS, the following line in the
hardware initialisation code selects 320 x 200, 15-bit true colour:

screen_buffer = DOSGfxBegin ("VESA,W:320,H:200,B:15");

The following three lines of code are used to apply the material described in
cube.mat to our revolving cube:

cube_material = BrFmtScriptMaterialLoad ("cube.mat");
BrMaterialAdd (cube_material);

cube->material = BrMaterialFind ("BLUE MATERIAL");

BrFmtScriptMaterialLoad loads a material from a material script and returns a
pointer to an initialised br_material structure. BrMaterialAdd adds the new
material to the registry. All materials must be added to the registry before they can be
used in rendering.

BrMaterialFind searches for a material by name in the registry. You will recall that
BLUE MATERIAL was the name entered in the identifier field in the material script
file cube.mat. BrMaterialFind returns a pointer to a br_material (or NULL
if the search was unsuccessful).

Use your text editor to experiment with the properties of BLUE MATERIAL, or to
create your own material script files.

8-Bit Indexed Colour Mode

As previously noted, the complexities of palette management make 8-bit indexed
colour more complex to work with than true colour. You can build your own palettes
using the supplied utility MKRANGES. For now we will use the palette supplied
with BRender (std.pal) when working in 8-bit mode.

The 256 colours in std.pal are divided into seven ranges, or ‘colour ramps’. The first
64 colours represent shades of grey ranging from very dark grey (black) to very light
grey (white). Colours 64 to 95 are various shades of blue.

Colour Ramps in

std.pal
Range Colour
0-63 Grey

64-95 Blue
96-127 Green

128-159 Cyan

160-191 Red

192-223 Magenta

224-255 Yellow

=
(V)]
ADDING COLOURI

ADDING COLOUR!

BRTUTORS5.C
/*
* Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.
* Program to Display a Revolving Illuminated Blue Cube.
*/
#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"
int main(int argc, char **argv)
{
br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette;
br_actor *world, *observer, *cube;
br_material *cube_material;
int i;

[xHFFxxAFxxx Tnitialise BRender and Graphics Hardware ****kkxxddx/
BrBegin();
/*
* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrzZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);
back_buffer = BrPixelmapMatch (screen_buffer,BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch(screen_buffer, BR_PMMATCH_DEPTH_16);

/*************** Bulld the World Database *****************/
/*
* Load Root Actor. Load and Enable Default Light Source
*/
world = BrActorAllocate (BR_ACTOR_NONE,NULL) ;
BrLightEnable (BrActorAdd (world, BrActorAllocate (BR_ACTOR_LIGHT,NULL))) ;
/*
* Load and Position Camera
*/
observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA,NULL)) ;
observer->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&observer->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),
BR_SCALAR(5.0));
/*
* Load and Position Cube Model
*/
cube = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
cube->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34RotateY (&cube->t.t.mat, BR_ANGLE_DEG(30)) ;

/*
* Load and Apply Cube's Material
*/
cube_material = BrFmtScriptMaterialLoad("cube.mat");

BrMaterialAdd (cube_material);

cube->material = BrMaterialFind("BLUE MATERIAL");

/********************** Animation LOOp ******************/
for (i=0; i < 200; i++) {
BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;
BrZbSceneRender (world, observer, back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateX (&cube->t.t.mat, BR_ANGLE_DEG(2.0)) ;
}
/*
* Close down
*/
BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZzbEnd () ;

BrEnd () ;

return 0;
}
BRTUTORS5.C

So colour information in 8-bit colour mode specifies an index into a colour palette. A
material script file describing a blue material (using std. pal) is given below.

cube.mat

Material for Cube - 8-bit
A plain blue texture

material = [
identifier = "BLUE MATERIAL";
ambient = 0.05;
diffuse = 0.55;
specular = 0.4;
power = 10;
flags = [light, smooth];
index_base = 64;
index_range = 30;

1

Colour number 64 indexes the start of the blue colour ramp. The index_range
value defines the range of colours available for rendering this material. BRender uses
lighting calculations to determine ‘how blue’ a model with this material should appear
at any point. If no light is shining on the model, colour number 64 will be selected. If
a bright light is shining directly onto the model, values closer to 90 will be selected.

|i||
<

ADDING COLOUR

ADDING COLOUR!

Only two lines need to be changed in BRTUTORS . C to display a revolving blue cube
in 8-bit mode. One is highlighted in BRTUTR5b. C below. The other specifies 8-bit
mode in the hardware initialisation code (refer to the program listing on your Tutorial
Programs disk). If you are running BRender under DOS, the line:

screen_buffer = DOSGfxBegin (NULL) ;
replaces:
screen_buffer = DOSGfxBegin ("VESA,W:320,H:200,B:15");

BRTUTRS5B. C uses the material script file cube8.mat.

BRTUTRS5B.C

/*

* Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.
* Program to Display a Revolving Illuminated Blue Cube (8-bit mode)

*/

#include
#include
#include
#include

<stddef.h>
<stdio.h>
"brender.h"
"dosio.h"

int main(int argc, char **argv)

{

br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette;
br_actor *world, *observer, *cube;
br_material *cube_material;

int 1i;

/*x**xxx%% Initialise BRender and Graphics Hardware *#***xx&kkxx/

BrBegin () ;

/*

* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrZbBegin (screen_buffer->type, BR_PMT_DEPTH_16);
back_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_OFFSCREEN) ;

depth__

buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_DEPTH_16);

/*************** Build the World Database **********************/

world

= BrActorAllocate (BR_ACTOR_NONE, NULL) ;

BrLightEnable (BrActorAdd (world, BrActorAllocate (BR_ACTOR_LIGHT,NULL))) ;

observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA, NULL)) ;

observer->t.type = BR_TRANSFORM_MATRIX34;

BrMatrix34Translate (&observer->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),

BR_SCALAR(5.

/*
* Load and Position Cube Model
*/
cube = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
cube->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34RotateY (&cube->t.t.mat, BR_ANGLE_DEG(30)) ;

/*
* Load and Apply Cube's Material
*/

cube_material = BrFmtScriptMateriallLoad("cube8.mat");

BrMaterialAdd (cube_material) ;
cube->material = BrMaterialFind("BLUE MATERIAL");

/********************** Animation Loop ***********************/

for (i=0; i < 200; i++) {
BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;
BrZbSceneRender (world, observer, back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateX (&cube->t.t.mat, BR_ANGLE_DEG(2.0));

}

BrPixelmapFree (depth_buffer);/*Close down*/

BrPixelmapFree (back_buffer);

BrZbEnd () ;

BrEnd () ;
return 0;

BRTUTRS5B.C

0));

ADDING COLOURi

Texture 6
Mapping

TEXTURE MAPPINGI
[\%)

Imagine taking a photograph of the bark of a tree and somehow wrapping it around a
cylinder to create a 3D image of a tree trunk, or superimposing a 2D image of a brick
wall onto a flat rectangular face to make it look like a wall.

Texture mapping attempts to mimic this process. A texture map is a rectangular 2D
image (perhaps scanned from a photograph or created using a paint package) that can
be mapped onto the surface of a 3D model. The individual elements in a texture map
are often called texels. Each of the polygons used in the construction of a model is
mapped to a specific area of the texture map by means of texture co-ordinates
assigned to the polygon’s vertices. Texture co-ordinates are linearly interpolated
between vertices in the same way that colour values for the interior of smooth shaded
polygons are interpolated between the vertex colours.

AV :

Figure 38 Texture Mapping

Texture mapping is by far the most effective way of constructing realistic images.
Imagine trying to reproduce the wood grain in your kitchen table or a marble column
without using a texture map.

BRTUTORG . C creates an image of the Earth by superimposing a 2D texture map of
the world onto a sphere. Note that a true colour mode has been selected. If you are
running BRender under DOS, the following line in the hardware initialisation code
selects 320 x 200, 15-bit true colour:

screen_buffer = DOSGfxBegin ("VESA,W:320,H:200,B:15");

Loading the Texture Map

Texture maps must be loaded (or created) and registered, before they can be used in
rendering:

BrMapAdd (BrPixelmapLoad ("earthl5.pix"));

The file earthl5.pix stores a texture map depicting the Earth’s surface.
BrPixelmapLoad loads a .pix file and returns a pointer to br_pixelmap.
BrMapAdd adds a texture to the registry. Note that textures, like materials, are stored
in the registry by name. When you want to use a registered texture, you can refer to it
by name. The texture loaded from earth15.pix is called, logically enough, ‘earth’.
It is assigned in the material script file earth.mat.

Loading the Material

The following code loads a material description from the material script file
earth.mat and adds it to the registry:

planet_material = BrFmtScriptMateriallLoad ("earth.mat");
BrMaterialAdd (planet_material);

Note that the same result could have been achieved using the following code:
BrMaterialAdd (BrFmtScriptMaterialLoad ("earth.mat"));

Storing a pointer to the loaded material in planet_material allows the
programmer to dynamically access fields in the structure.

Assigning the Material

The following code assigns the material earth_map to the planet actor:
planet->material = BrMaterialFind("earth_map");
'earth_map' is the name of the material described in earth.mat.

Let’s take a look at the material script file earth.mat.

earth.mat

This material script file describes the appearance
of the material "earth_map"

material = [
identifier = "earth_map";
ambient = 0.05;
diffuse = 0.55;

specular = 0.4;

power = 20;

flags = [];

map_transform = [[1,0], [0,11, [0,011;
colour_map = "earth";

1

'earth_map"' is the name by which this material is known and registered.

]
w

TEXTURE MAPPING

TEXTURE MAPPINGI
=

BRTUTORG6 .C

/*
*

*

Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.
Program to Display a Texture Mapped Sphere (15-bit colour).

*/

#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"

int main(int argc, char **argv)

{

br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette;
br_actor *world, *observer, *planet;

br_material *planet_material;

int 1i;

J/*x*k*xkkxkkx*x Tnitialise BRender and Graphics Hardware ****x*xxkkx/

BrBegin();

/*
* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrzZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);

back_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_DEPTH_16);

/*************** Build the World Database **********************/

world = BrActorAllocate (BR_ACTOR_NONE,NULL) ;

BrLightEnable (BrActorAdd (world, BrActorAllocate (BR_ACTOR_LIGHT,NULL))) ;

observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA, NULL)) ;

observer->t.type = BR_TRANSFORM_MATRIX34;

BrMatrix34Translate (&observer—->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),
BR_SCALAR(5.0));

/*
* Load and Position Planet Actor

*/

planet = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
planet->model = BrModellLoad("sph32.dat");

BrModelAdd (planet->model) ;

planet->t.type = BR_TRANSFORM_MATRIX34;

BrMatrix34RotateX (&planet->t.t.mat, BR_ANGLE_DEG(90)) ;

/*
* Load and Register "earth" Texture

*/
BrMapAdd (BrPixelmapLoad ("earthl5.pix"));

/*
* Load and Apply Earth Material
*/

planet_material = BrFmtScriptMaterialLoad("earth.mat");
BrMaterialAdd(planet_material);
planet->material = BrMaterialFind("earth_map");

/********************** Animation LOOp ***********************/

for (i=0; 1 < 200; i++) {
BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;

BrZbSceneRender (world, observer, back_buffer,depth _buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateY (&planet->t.t.mat, BR_ANGLE_DEG(2.0));

/*

* Close down

*/
BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZbEnd () ;

BrEnd () ;
return 0;

BRTUTORG6 .C

Note that, depending on your platform and the version of BRender installed, lighting
calculations may not be performed for texture mapped models in true-colour modes.
In addition smooth shading may not be supported. Light and smooth
shading may need to be turned off. Refer to your installation guide for
details. Note flags = [] disables all rendering flags.

map_transformisa matrix representing a general texture map transformation. The
transform is applied to texture coordinates. This enables textures to be translated,
scaled and rotated. [[1,0], [0,1]1, [0,0]] represents the identity matrix
(remember texture maps are two-dimensional).

[[1,0], [0,1]1, [0.5,011] encodesa translation 0.5 units in x.

~
)]

TEXTURE MAPPING

TEXTURE MAPPINGI
=)

Scaling transformations can be used to produce a tiling effect. For example
[[3,01, [0,31, [0,0]] generatesa new texture map made up of 9 (3*3) copies
of the original map (each reduced in size by a factor of 9).

[(0.707,-0.7071, [0.707,0.707], [0,0]1] isa rotation of approximately
+45°,

See Computer Graphics — Principles and Practice, by James D. Foley et al., Chapter
5, for a comprehensive overview of 2D transformations.

colour_map = "earth" specifies the name of the texture map to be retrieved
from the registry. If you don’t know, or can’t remember, what a texture map is called,
use the TEXCONYV utility to retrieve its name from the relevant . pix file.
TEXCONYV is BRender’s texture import and conversion utility, command line
options are detailed in Chapter 8.

The texture map used in our example, called "earth', was loaded from
earthl5.pix. To verify this name, enter the following command line:

texconv earthl5.pix
The following will be displayed,

TEXCONV 1.5 Copyright (C) 1994 by Argonaut Technologies Limited
Loaded ‘earth’ as BR_PMT_RGB_555 (256,256)

confirming that the texture map is called 'earth'. BR_PMT_RGB_555 tells us that
the pixel map format is RGB, 5 bits per pixel(15-bit true colour).

A number of texture maps are supplied with BRender to help get you started (all have
.pix extensions). However, you will want to define and apply your own textures —
perhaps scanned from a photograph, or created using a paint package such as
Photoshop. TEXCONYV is used for importing and converting textures to be used in
BRender applications.

To convert the sample pixel map bluebels.bmp, included on your Tutorial
Programs disk, to BRender 15-bit RGB format, enter the following command line:

texconv bluebels.bmp -n bluebells —-c BR_PMT_RGB_555 -0 bbelll5.pix

The input file, bluebels. bmp, is in 8-bit, 256 indexed colour format. TEXCONV
creates an output file, bbe1115.pix, in 15-bit RGB (BRender . pix) format. The —
n option assigns the name '"bluebells' to the texture map stored in
bbelll5.pix. This newly created texture can now be used in BRender
applications. You might want to try substituting it for 'earth' in the above program.
Remember that you can experiment with material properties without having to re-
compile the program every time you make a change — simply edit the material script
file as required.

8-Bit Colour

Lighting calculations are performed for textures in 8-bit colour mode. Textures are

stored as pixel maps made up of indices into a shade table. A shade table is a two

dimensional array (represented as a pixel map) containing, typically, 256 columns for

colour index values and 64 rows for representing lighting levels.

Texture Map to be lit

100
\\\
T Shade Table
0<@——| 100 | ——& 255
0 Dark
30 40
64 Light
Colour Palette
0@ | 40 [———& 255
‘ RGB ‘ Colour index value output to sc

Figure 39 A Shade Table

Each entry in the shade table is an index into a colour palette. The shade table is

usually arranged so that each row contains a number of shades of the same colour,

ranging from very dark to very bright.

You can build your

own shade tables using the tool MKSHADES. The shade table

supplied with BRender, shade. tab, references the palette std.pal. To display

BRender’s standard shade table, enter the following command line:

texconv -I pixelmap shade.tab -P std.pal -v

|
|
TEXTURE MAPPINGI

TEXTURE MAPPINGI
=

BRTUTR6B.C

/*
* Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.
* Program to Display a Texture-Mapped Sphere (8-bit colour).

*/

#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"

int main(int argc, char **argv)
{
br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette, *shade;
br_actor *world, *observer, *planet;
br_material *planet_material;
int 1i;

J/*x*k*xkkxkkx*x Tnitialise BRender and Graphics Hardware ****x*kxxkkx/
BrBegin();
/*

* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrzZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);
back_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch(screen_buffer, BR_PMMATCH_DEPTH_16);

/*
* Load Shade Table
*/
shade = BrPixelmapLoad("shade.tab");
if (shade==NULL)
BR_ERROR("Couldn't load shade.tab");
BrTableAdd (shade) ;

/*************** Bulld the World Database **********************/

world = BrActorAllocate (BR_ACTOR_NONE,NULL) ;
BrLightEnable (BrActorAdd (world, BrActorAllocate (BR_ACTOR_LIGHT,NULL))) ;

/*

* Load and Position Camera

*/
observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA,NULL)) ;
observer->t.type = BR_TRANSFORM_MATRIX34;

BrMatrix34Translate (&observer->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0)

/*

BR_SCALAR(5.0));

* Load and Position Planet Actor

*/

planet = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
planet->model = BrModelLoad("sph32.dat");

BrModelAdd (planet->model) ;

planet->t.type = BR_TRANSFORM MATRIX34;

BrMatrix34PostRotateX (&planet->t.t.mat, BR_ANGLE_DEG(90));

/*

* Load and Register "earth" Texture

*/

BrMapAdd (BrPixelmapLoad ("earth8.pix"));

/*

* Load and Apply Earth Material

*/

planet_material = BrFmtScriptMateriallLoad("earth8.mat");
BrMaterialAdd (planet_material);
planet->material = BrMaterialFind("earth8_map");

/********************** Animation Loop ***********************/

for (i=0; i < 200; i++) {

/*

BrPixelmapFill (back_buffer,0);

BrPixelmapFill (depth_buffer, OxFFFFFFFF) ;
BrZbSceneRender (world, observer, back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateY (&planet->t.t.mat, BR_ANGLE_DEG(2.0));

* Close down

*/

BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);

BrZbEnd () ;

BrEnd () ;
return 0;

BRTUTR6B.C

~
o

TEXTURE MAPPING

TEXTURE MAPPING!

BRTUTR6B. C displays a texture-mapped sphere in 8-bit colour mode

script file earth8.mat is listed below.

. The material

earth8.mat

of the material "earth8_map"

material = [

ambient = 0.05;
diffuse = 0.55;

1

This material script file describes the appearance

identifier = "earth8_map";

specular = 0.4;

power = 20;

flags = [light, smooth];
map_transform = [[1,07,
colour_map = "earth";
index_shade = "shade_table";

Note that the shade table, like the texture map, is referenced by name.

File
o |
onversion

R
|!!|

FILE CONVERSION

A number of utilities are supplied with BRender for importing and converting files.
3DS2BR converts Autodesk 3D Studio files saved in . 3ds binary file format
to BRender . dat format.

GEOCONY convert models from one geometry format to another.
TEXCONY provides texture importing, scaling, quantizing and remapping
functions.

Converting 3D Studio (.3ds) Files

3DS2BR converts model descriptions stored in . 3ds binary file format to BRender
.dat format. Type 3DS2BR, followed by return, to display a list of 3DS2BR
command line options. The steps involved in converting a . 3ds file are detailed
below. This example converts the model description file duck . 3ds, supplied with
3D Studio (and included on the Tutorial Programs disk for your convenience) to
BRender format. duck . 3ds describes a three component model hierarchy —a yellow
duck body with two black eyes.

The command line,
3DS2BR duck.3ds —-nomatrix -mod duck.dat -scr duck.mat

extracts information describing model geometry and stores it in duck . dat. Material
descriptions are stored in the script file duck .mat (the -nomatrix option ensures

that inverse mesh matrices are not applied — see Chapter 8 for more information on
3DS2BR).

Enter the following command line,
geoconv duck.dat -1

to display information on the newly created file duck . dat. The following listing
should be displayed:

GEOCONV 1.21 Copyright (C) 1994-1995 by Argonaut Technologies Limited

Models: 3
Vert Face Edges Fgrps Vgrp Sor DOTQ
s s s t Radius
Model List 17 24 40 1 1 17 —-—-
Object05 244.08
5
Model List 17 24 40 1 1 17 —-—-
Object04 1208.5
9
Model List 268 516 783 1 1 268 @ ———-
Object03 2181.6
3

TOTAL 302 564 863 3 3

Materials: 2
BLACK PLASTIC
YELLOW PLASTIC

This listing tells us that three models are combined to build the model described in
duck .dat —one model describes the duck’s body, the other two its eyes.

The following command line collapses the model hierarchy described in duck.dat
into a single model. This model is then translated to the origin and scaled to fit within
a sphere of radius 1.

geoconv duck.dat -0 duck dat
input file attach eyes to centre model normaliseto output file
body to make at (0,0,0) radius 1
one model

If you again enter geoconv duck.dat -1 the following listing will be displayed,

GEOCONV 1.21 Copyright (C) 1994-1995 by Argonaut Technologies Limited
Models: 1

Vert Face Edge Fgrp Vgrp Sor DOT

s s s s s t Q Radius
Model 302 564 863 2 2 302 - 0.9999
List -
Object03

Materials: 2
BLACK PLASTIC
YELLOW PLASTIC

duck .dat now describes a single model of radius 1 (0.9999). Note that material
associations are retained.

To recap: the following command lines were used to import the 3D Studio .3ds
model description file.

3DS2BR duck.3ds -nomatrix -mod duck.dat -scr duck.mat
geoconv duck.dat -m -c -n -o duck.dat

Two output files were created — duck . dat to store model geometry, duck .mat to
store material descriptions. The model hierarchy described in duck .dat was
collapsed into a single model. This model was then translated to the origin before
being normalised to a radius of 1.

The imported ‘duck’ model is used in BRTUTOR7 . C. Note that associated materials
must be loaded and registered before the model is loaded (otherwise it will appear

@
Iil|

FILE CONVERSION

FILE CONVERSION!

matt grey). If associated materials are not found in the registry when a model is loaded
the default material is used. The application may then assign any registered material
to the model.

The following code loads materials from the script file duck .mat, and adds them to
the registry.

i = BrFmtScriptMateriallLoadMany ("duck.mat",mats,BR_ASIZE (mats));
BrMaterialAddMany (mats, i) ;

BrFmtScriptMateriallLoadMany and BrMaterialAddMany are called because
more than one material is being loaded and registered. The macro BR_ASIZE
(defined in header file compiler.h) calculates the size of an array.
BrFmtScriptMateriallLoadMany returns the number of materials successfully
loaded.

duck = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
duck->model = BrModelLoad ("duck.dat");
BrModelAdd (duck->model) ;

The material script file duck .mat is listed below.

duck .mat

BRender Material Script

material = [
identifier = "BLACK PLASTIC";
flags = [light, smooth];
colour = [0,0,07];
ambient = 0.000000;
diffuse = 0.000000;
specular = 1.000000;
power = 69.309998;
1;
material = [
identifier = "YELLOW PLASTIC";
flags = [light, smooth];
colour = [202,179,52];

ambient = 0.679216;

diffuse = 0.679216;

specular 0.741569;

power = 23.770000;
17

YELLOW PLASTIC is used for the duck body, BLACK PLASTIC for the eyes. Note
that the above material description will only work in true- colour mode. In 8-bit
indexed mode, the colour field is ignored. Instead, BRender looks for an index into
a colour palette. We will need to edit the script file if we want to use the duck model
in 8-bit mode. In the palette provided with BRender (std.pal), the ‘yellow’ colour

ramp ranges from index 224 (yellow so dark it’s black) to index 255 (yellow so bright
it’s white). Try editing duck .mat as follows, and running the program in 8-bit
indexed mode (simply pass NULL to DOSfxBegin instead of "VESA, W:320,
H:200,B:15").

duck.mat

BRender Material Script

#
material = [
identifier = "BLACK PLASTIC";
flags = [light, smooth];
colour = [0,0,07;
ambient = 0.000000;
diffuse = 0.000000;
specular = 1.000000;
power = 69.309998;
index_base = 0;
index_range = 0;
1;
material = [
identifier = "YELLOW PLASTIC";
flags = [light, smooth];
colour = [202,179,52];

ambient = 0.679216;
diffuse = 0.679216;
specular 0.741569;
power = 23.770000;
index_base = 224;
index_range = 24;

o
I

FILE CONVERSION

FILE CONVERSION!

BRTUTOR7.C

/*
* Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.
* Program to Display a Revolving Yellow Duck.

*/

#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"

int main(int argc, char **argv)

{

br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette;
br_actor *world, *observer, *duck;

int 1i;

br_material *mats([10]; /*for storing pointers to material descriptions*/

/*x**x%kkx% Tnitialise BRender and Graphics Hardware *****kx*kx*/

BrBegin();

/*
* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrzZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);

back_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_DEPTH_16);

/*************** Build the World Database **********************/

world = BrActorAllocate (BR_ACTOR_NONE,NULL) ;
BrLightEnable (BrActorAdd (world, BrActorAllocate (BR_ACTOR_LIGHT,NULL))) ;

/*
* Load and Position Camera
*/
observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA, NULL)) ;
observer->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&observer—->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),
BR_SCALAR(5.0));

/*

* Load and Apply Duck Materials

*/
i = BrFmtScriptMaterialLoadMany ("duck.mat",mats, BR_ASIZE (mats));
BrMaterialAddMany (mats, i) ;

/*
* Load and Position Duck Model
*/
duck = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
duck->model = BrModellLoad("duck.dat");
BrModelAdd (duck->model) ;
duck->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34RotateX (&duck->t.t.mat, BR_ANGLE_DEG(30)) ;

/********************** Animation Loop ***********************/

for (i=0; i < 200; i++) {
BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXxFFFFFFFF) ;
BrZbSceneRender (world, observer,back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateX (&duck->t.t.mat, BR_ANGLE_DEG(2.0));

/*
* Close down
*/
BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZbEnd () ;

BrEnd () ;
return 0;

BRTUTOR7.C

R
|ii|

FILE CONVERSION

R
=]

FILE CONVERSION

Importing Texture Maps

As we have seen, you can import models created in 3D Studio using 3DS2BR and
GEOCONV. You will probably also want to import your own texture maps (perhaps
created in a dedicated paint package or scanned from a photograph). TEXCONYV,
introduced in Chapter 6, allows you to do this.

15-bit True Colour

The following command line imports the pixel map gold.gif and generatesa .pix
file in BRender 15-bit format.

texconv gold.gif -n gold -c BR_PMT_RGB_555 -0 goldl5.pix

gold.gif can be found on your Tutorial Programs disk. Note that textures can only
be applied to models that have been saved with texture co-ordinates. Remember to
apply texture co-ordinates to models created in 3D Studio (or other 3D modelling
package) before saving and importing. If, however, you forgot to apply texture co-
ordinates in your modelling package, all is not lost. The BRender function
BrModelApplyMap generates texture co-ordinates for a model’s vertices. It allows
you to select from a number of mapping options — planar, spherical, cylindrical, disk
or none. The mapping option determines how a texture is wrapped around a model
(refer to your technical reference manual for further details). Note that this function
may not be as versatile as the texture mapping facility in your modelling package.

BRTUTORS. C applies the imported texture 'gold' to the duck model imported
earlier. This model was originally saved without texture co-ordinates, so we need to
call BrModelApplyMap.

The following lines of code load and register the 'gold' texture map (type
texconv goldl5.pix to verify the name 'gold").

gold_pm = BrPixelmapLoad("goldl5.pix");
if (gold_pm==NULL)
BR_ERRORO ("Couldn’t load goldl5.pix");
BrMapAdd (gold_pm) ;

Note that:
BrMapAdd (BrPixelmapLoad("goldl5.pix"));

would have achieved the same result. It would not, however, have informed us if it
was unable to load the specified file. This would happen if, for instance, you forgot to
run the command line:

texconv gold.gif -c BR_PMT_RGB_555 -o goldl5.pix

to generate the BRender 15-bit texture map goldl5.pix.

The material script file containing the material gold is loaded and registered:
BrMaterialAdd (BrFmtScriptMaterialLoad ("goldl5.mat"));

Texture co-ordinates are applied:
BrModelApplyMap (duck->model, BR_APPLYMAP_ PLANE,NULL) ;

The 'gold' material is assigned:
duck->material = BrMaterialFind("goldl5");

Note that the script file duck . mat, containing duck’s associated materials BLACK
PLASTIC and YELLOW PLASTIC, has not been loaded. If these materials had been
registered, they would have been automatically assigned and this line of code would
have been ignored!

The material script file go1d15.mat is given below.

goldl5.mat

This material script file describes the appearance
of the material "goldl5"
material = [

identifier = "goldl5";

colour = [0,255,0];

ambient = 0.05;

diffuse = 0.55;

specular = 0.4;

power = 20;

flags = [];

map_transform = [[1,0], [0,11, [0,011;
colour_map = "gold";

1

Note that, depending on your platform and the version of BRender installed, light and
smooth may need to be turned off (Elags = [];)in 15-bit mode!

FILE CONVERSIONi

FILE CONVERSION!

BRTUTORS.C

/*
* Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.
* Program to Display a Texture Mapped Duck (15-bit).

*/

#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"

int main(int argc, char **argv)
{
br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette;
br_actor *world, *observer, *duck;
br_pixelmap *gold_pm;
int 1i;

J/*x*k*xkkxkkx*x Tnitialise BRender and Graphics Hardware ****x*kxxkkx/
BrBegin();
/*

* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrzZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);

back_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_DEPTH_16);

/*************** Build the World Database **********************/

world = BrActorAllocate (BR_ACTOR_NONE,NULL) ;
BrLightEnable (BrActorAdd (world, BrActorAllocate (BR_ACTOR_LIGHT,NULL))) ;

/*
* Load and Position Camera
*/
observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA, NULL)) ;
observer->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&observer—->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),
BR_SCALAR(5.0)) ;

/*
* Load and Register "gold" Texture
*/
gold _pm = BrPixelmapLoad("goldl5.pix");
if (gold_pm==NULL)
BR_ERRORO ("Couldn’t load goldl5.pix");

BrMapAdd (gold_pm) ;

/*
* Load and Apply "gold" Material
*/

BrMaterialAdd (BrFmtScriptMaterialLoad("goldl5.mat")) ;

/*
* Load and Position Duck Model
*/
duck = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
duck—->model = BrModelLoad ("duck.dat");
BrModelAdd (duck->model) ;
BrModelApplyMap (duck—->model, BR_APPLYMAP_ PLANE, NULL) ;
duck->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34RotateX (&duck->t.t.mat, BR_ANGLE_DEG(30)) ;
duck->material = BrMaterialFind("goldl5");

/********************** Animation LOOp ***********************/

for (i=0; i < 200; i++){
BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;
BrZbSceneRender (world, observer,back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateX (&duck—->t.t.mat,BR_ANGLE_DEG(2.0));

/*

* Close down

*/
BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZbEnd () ;

BrEnd () ;
return 0;

BRTUTORS.C

|ii|
[t

FILE CONVERSION

o
|!I|

FILE CONVERSION

BRTUTR8B.C

/*

* Copyright (c) 1996 Argonaut Technologies Limited.

* Program to Display a Texture Mapped Duck

*/

(8-bit) .

All rights reserved.

#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"

int main(int argc, char **argv)

{

br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette, *shade;

br_actor *world, *observer, *duck;
br_pixelmap *gold_pm;
int 1i;

J/*x*k*xkkxkkx*x Tnitialise BRender and Graphics Hardware ****x*kxxkkx/

BrBegin();

/*
* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrzZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);

back_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_DEPTH_16);

/*
* Load Shade Table
*/
shade = BrPixelmapLoad("shade.tab");
if (shade==NULL)
BR_ERRORO ("Couldn't load shade.tab");
BrTableAdd (shade) ;

/*************** Build the World Database **********************/

world = BrActorAllocate (BR_ACTOR_NONE,NULL) ;

BrLightEnable (BrActorAdd (world, BrActorAllocate (BR_ACTOR_LIGHT,NULL))) ;

/*

* Load and Position Camera

*/
observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA, NULL)) ;
observer->t.type = BR_TRANSFORM_MATRIX34;

BrMatrix34Translate (&observer->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),

BR_SCALAR(S.

/*
* Load and Register "gold" Texture
*/
gold_pm = BrPixelmapLoad("gold8.pix");
if (gold_pm==NULL)
BR_ERRORO ("Couldn’t load gold8.pix");
BrMapAdd (gold_pm) ;

/*
* Load and Apply "gold" Material
*/

BrMaterialAdd (BrFmtScriptMaterialLoad("gold8.mat"));

/*

* Load and Position Duck Model

*/
duck = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
duck->model = BrModellLoad("duck.dat");
BrModelAdd (duck->model) ;
BrModelApplyMap (duck->model, BR_APPLYMAP_PLANE,NULL) ;
duck->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34RotateX (&duck->t.t.mat, BR_ANGLE_DEG(30)) ;
duck->material = BrMaterialFind("gold8");

/********************** Animation Loop ***********************/

for (i=0; i < 200; i++) {
BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;

0));

BrZbSceneRender (world, observer, back_buffer,depth_buffer);

BrPixelmapDoubleBuffer (screen_buffer,back_buffer

)i
BrMatrix34PostRotateX (&duck—->t.t.mat, BR_ANGLE_DEG(2.0));

/*

* Close down

*/
BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZbEnd () ;

BrEnd () ;
return 0;

BRTUTR8B.C

o
w

FILE CONVERSION

FILE CONVERSION!

8-bit Indexed Colour

Enter the following command line to generate an 8-bit pixel map using gold.gif.
texconv gold.gif -n gold -c BR_PMT_INDEX_ 8 -Q std.pal -o gold8.pix

The —Q std.pal option quantizes the input pixel map to the standard palette. The
colours in std.pal that best approximate those in the pixel map associated with the
.gif file are substituted in the .pix file.

BRTUTRS8b. C renders the texture-mapped duck in 8-bit mode.

gold8.mat

This material script file describes the appearance
of the material "gold8"

material = [
identifier = "gold8";
colour = [0,255,0];
ambient = 0.05;
diffuse 0.55;
specular = 0.4;
power = 20;
flags = [light, smooth];
map_transform = [[1,0], [O,1], [0,011;
colour_map = "gold";
index_shade = "shade_table";

BRendﬁr 8
Tools

BRENDER TOOLS!

A number of tools are provided to assist you in pre-preparing data for use in BRender
programs:
3DS2BR converts Autodesk 3D Studio files saved in . 3ds file format to
BRender .dat format.
GEOCONY manipulates (scales, centres etc.) model geometry and converts
models from one geometry format to another.
DXF2BR is a geometry converter that converts AutoCad .dxf files to BRen-
der .dat format.
TEXCONYV is used to import and manipulate textures.
MKSHADES is a tool for creating shade tables.
MKRANGES is used to construct customised palettes using colour ramps.
PALJOIN is used to cut and paste palettes.
VIEWPAL is a tool for displaying palettes on the screen.

You were introduced to 3DS2ZBR, GEOCONYV and TEXCONYV in Chapter 7. They
will be discussed in more detail here. DXF2BR converts AutoCad files to BRender
format. MKRANGES, MKSHADES, PALJOIN and VIEWPAL are used in 8-bit
indexed mode to construct and view user defined palettes and shade tables.

The techniques described in this chapter for importing models and textures are
summarised in Figure 40. These techniques are intended as illustrative examples of
how you might approach the task of importing models, materials and textures (and
that of palette management if working in 8-bit mode). You should devise your own
strategy, according to the requirements of your application, and adapt the above
techniques to your needs.

peoTdewexigig

STOOL d4dAdANAYT4

[y
=)

ordewroxigag

x1d") dewoxid nﬁn__%a 0" B ANOOXAL

[q®} 9peys —§

HAVHSIIN

14 pred O- 4- ANODXHL

A -
>

—o17o1ed 2anjxel

e3) ‘J18') seanixa,

a)3e1ed NIOfT1vd L Syered dugs —SHONVEIIN a1} 1%9)
A
prorreLeIe\1dLDGIW JI1g
[rerereIdLog W f1g
(8or) oYy 80T ———
INPEOT[BLIIBIALIG d
e *
e ——p—— @ewr) o[y 1dLIdg [BLIOJRA
(yeur’) o[y [eLYeIN L oTII SDE-
S - L —uaesas W oPE —bpmg ag
(30e") 9L _ [
rvpps——) 919 LOV
_Iﬁmw.v oIy [PPON ———
"NPTYIPPONE 9y yep” \ANODOHD
- 1} .
20T[OPOINIG [y os®

Figure 40

BRENDER TOOLS!

3DS2BR

3DS2BR is a DOS command line tool for converting Autodesk 3D Studio (3DS)
models to one or more BRender format files.

3DS2BR interprets the information in the . 3ds file and converts it to its nearest
BRender equivalent. Depending on which command line options are specified, it will
generate one or more of the following files:

a binary file containing the meshes in the model

a binary file containing all the materials in the model

a binary file containing a BRender hierarchy tying these together

a text file storing conversion information

a material script file that can be loaded directly into BRender, describing the

materials used with the model.

Command line format: 3DS2BR 3ds_file.3ds {options} where:
3ds_file.3ds is the 3D Studio Binary file you wish to convert.

3DS2BR command line options are listed below:

[-h] Display a help screen detailing command
line options

[-Vv] Turn on warning and information messages.
By default, only error messages are
displayed.

[-mod <model file name>] Save models to file

[-mat <material file Save materials to file

name>]

[-scr <material script Save materials to script file

file name>]

[-act <actor file name>] Save actor hierarchy to file

[-log <log file name>] Save logfile containing conversion
information

[-flat] Build a flat hierarchy, ignoring
keyframer data

[-nopivot] Ignore keyframer pivot point

[-nomatrix] Ignore mesh matrix

[-noaxis] Do not remap axes to correspond to 3DS
user interface

[-nl] Replace lights with dummy actors

[-nc] Replace cameras with dummy actors

[-hither <distance>] Set all camera hither distances to this value

[-yon <distance>] Set all camera yon distances to this value

[-pc] Set perspective correction for all textured
materials

The —mod option extracts mesh information describing 3DS model geometry, and
stores it in the specified binary file. The —mat option extracts material description
information, and stores it as a binary file. The —act option extracts the 3DS actor
hierarchy. The —1og option stores conversion information in a text file. The -scr
option extracts material description information and stores it in a BRender material
script file (a text file).

You can specify any, or a combination, of the above options. For example, if you are
only interested in importing the mesh data describing model geometry, use the -mod

option:
3DS2BR 3ds_file.3ds —-mod model_file.dat

This command line saves the converted mesh data in model_file.dat. Models
stored as .dat files can be loaded into BRender programs using
BrModeLoad/Many.

Command line options can also be read from a file. The following command line
performs a full conversion, generating and saving all five BRender format files, while
displaying warning and information messages:

3DS2BR 3ds_file.3ds Qoptions -v

where the options file contains the following lines:

—mod model_file.dat

-mat material_file.mat
—act actor_file.act

-log log_file.log

-scr mat_script_file.mat

Note that the above extensions are adopted by convention, and are not obligatory.

If you want to convert a hierarchical 3DS model and use it directly in BRender, use
the —act and —mod options. For example, suppose a hierarchical model of a human
body was contained in the file person.3ds:

3DS2BR person.3ds -act person.act -mod person.dat

would create a file person.dat containing the models defined in person. 3ds,
and a file person.act defining the hierarchical relationships between these models.
The 3DS hierarchy could be reproduced in BRender by loading and registering the
converted models,

no_of_models = BrModelLoadMany ("person.dat", * model_array,
max_no) ;
BrModelAddMany (* model_array,no_of_models);

BRENDER TOOLSi

root_actor = BrActorLoad("person.act");

If you don’t wish to retain an actor hierarchy, you can collapse the contents ofa .dat
file containing multiple models into a single model (using GEOCONV’s —m option).
In this case you should specify the -nomatrix option when converting model data
using 3DS2BR. This model can then be loaded using BrModelLoad.

Options in this file can be separated by any whitespace characters. Lines in this file
are limited to 255 characters.

Examples illustrating the use of 3DS2BR are given later in this chapter.

GEOCONYV

GEOCONY converts models from one geometry format to another, allowing models
generated using 3D modelling packages to be used with BRender. It can also be used
to manipulate imported models.

Command line format: geoconv {options}

100

BRENDER TOOLS

The options are treated as commands, executed from left to right:

-2

Display command line options

<input file>

Load a model file

101

BRENDER TOOLS

-I <input-type> Set input file type

-0 <file> Generate output file

-0 <output-type> Set output data type

-n Normalise models to radius of 1.0

-c Centre models on 0,0,0

-f Flip face normals

-w <map-axes> Fix wrapped texture co-ordinates

-F <flag> Set or clear a model flag

-p Remove identical vertices

-P <FLOAT> Merge vertices within a given tolerance

-C Remove degenerate faces, unused vertices
and duplicate faces

-m Collapse current data to one actor and one
model

-r <pattern> Restrict subsequent operations to items
matching <pattern>

-1 List current data

-g Set each model to a different smoothing
group

-S <sort_type> Set sorting on output

-N <material-name> Set all models to use named material

-N default Set all models to use default material

-M <map-type>, <axis>, Apply a default U,V mapping to models

<axis>

-s <float> Uniform scale applied to models

-s <float>,<float>,<float> Non-uniform scale applied to models

-t <float>,<float>,<float> Translation applied to models

-a <axis>,<axis>,<axis> Remap axes

-D <name> Remap materials

-L <name> Rename materials

<input-type> =

dat
nff
asc

BRender model files
Eric Haines’ Neutral File Format
3d STUDIO .asc FILES

If a type is not specified, it will be guessed from the filename extension.

<output-type> =

models Jdat
c-models Source code for model data
structures

<map-—-axes> =

u fix wrapping along u axis

v fix wrapping along v axis

uv fix wrapping along uv axis
<axis> =

Xy z positive input axes

+X +y +2Z positive input axes

-X -y -z negative input axes

<map-type> =
none
disc
plane
cylinder
sphere

<material-
102 name> =
<string>
default

<sort-type> =

none
name

<flag> =
+d Set BR_MODF_DONT_WELD
-d Clear BR_MODF_DONT_WELD
+o0 Set BR_MODF_KEEP_ORIGNAL
) Clear BR_MODF_KEEP_ORIGNAL
+t Set BR_MODF_GENERATE_TAG
-t Clear S
+q Set BR_MODF_GENERATE_TAG
-q Clear S

BR_MODF_QUICK_UPDATE
BR_MODF_QUICK_UPDATE

There are three related points worth noting:

BRENDER TOOLS

3D Studio saves models with their longest axis down Z, and may need to be re-
oriented with the remap axis option (-a).

For the sake of consistency, it is advisable to pre-scale models as necessary with
this tool, rather than scale them within a BRender application.

By defaulg, if there are many models in a source file, they will be separated into
individual models (but saved as a single file).

DXF2BR

DFX2BR converts AutoCad .dxf files to BRender .dat format.
Command line format: DFX2BR {options}

Command line options are given below:

-0 <file> Generate output file

-d <value> Extrusion depth of 2D objects
-n Normalise models to radius 1.0
-c Center models on 0,0,0

-sx <value> Scale in x direction

-sy <value> Scale in y direction

-sz <value> Scale in z direction

-1 <comma separated list> Specify layers required

Type DFX2BR to display a list of command line options.

TEXCONV 2

TEXCONYV is a command-line tool for importing and manipulating textures.
Command line format: texconv {options}

Command line options are given below:

N
e
-2 Display command line options =
<input file> Load a file m
-I <input-type> Set input file type
-0 <output-type> Set output file type =
-a Toggle current 32-bit pixelmaps to exclude/ =
include alpha data (default exclude) Z
-c <pixelmap-type>|[, Convert to pixelmap type, may involve =
t] quantizing. ‘t’ is the alpha channel threshold (0-
255) for conversions involving 32-bit pixelmaps. m
-f ‘Forget’ all current data ==
-n <name> Assign identifier ‘name’ to data
-0 <file> Generate output file
-r <file>, <pixelmap- Load raw data file as pixelmap-type, with pixel
type>, offset,x,vy[,P] dimensions x,y, from offset into file. P is specified

to load as a palette

104

BRENDER TOOLS

-v View snapshot of current data (only
BR_PMT_INDEX_8)

_x Flip left/right

-y Flip top/bottom

-P <name> [, RAW]

Apply palette from a file to all current indexed
pixelmaps. If RAW is specified, the palette file is
768 byte RGB, otherwise pixelmap format

-Q <name>|[,b,r]

Quantize to palette supplied (pixelmap format)
using (b)ase and (r)ange palette entries

-R b, r Quantize and remap to (b)ase,(r)ange colours
(both values in the range
0-255)

-S x,y[,<float>] Scale to new x,y dimensions using optional filter
size (default 3.0)

@file

Perform all operations contained in <file>

<input-type> =
pix
bmp
gif
tga
iff

BRender Pixelmap format

Windows BMP format (4, 8, 24, RLLE4, RLES8
CompuServe GIF format (1- to 8-bit)

Targa TGA format (8-, 15-, 16-, 24-, 32-bit)
Amiga IFF/LLBM format (1- to 8-bit)

If an input type is not specifi

ed, it will be guessed from the filename extension.

<output type> =
palette
image
pixelmap
targa

Palette information stripped from bitmap (. pix)
Pixelmap without palette (. pix)

Image with any palette information (.pix)
Output a . tga file

The default output type is pi

xelmap.

BR_PMT_INDEX

8-bit indexed

BR_PMT_RGB_555

RGB 16-bit; 5 bits per colour

BR_PMT_RGB_565

RGB 16-bit; 5, 6, 5 bits per colour

BR_PMT_RGB_888

RGB 24-bit; 8 bits per pixel

BR_PMT_RGBX_888

RGB 32-bit; 8 bits per pixel

BR_PMT_RGBA_8888

RGB 32-bit; 8 bits per component

Note that TEXCONYV can take a BRender . pix file and convert it to . tga format.

You could save a scene gener:

ated in BRender:

BrPixelmapSave (back_buffer, "filename.pix")

then convert it to . tga format:

TEXCONV filename.pix -P std.pal -o filename.tga

MKSHADES

MKSHADES is a command-line tool that takes a source palette (usually a 1 by n
BR_PMT_RGBX_888 pixelmap generated by TEXCONYV) and generates an indexed
shade table. The shade table is used when rendering into an 8-bit indexed pixelmap
to perform shading across a lit textured material. Normally, the range of the shade
table corresponds to the current hardware palette and the indices in the texture itself.

Command line format: mkshades {options}

Command line options are given below:

<palette> Source BRender palette

[-o <shade-table>] | Output shade table pixelmap

[-d <dest- Destination palette if different from source

palette>]

[-n <num_shades>] Number of shades to generate (default 64) 105
[-r <base>,<size>] Range of colours in output palette (default 0,256)

MKRANGES

MKRANGES is a command line tool used to build custom ramped palettes.
Command line format: mkranges <input-text-file> <output-palette>

The input text file is read a line at a time. Lines starting with ’#’ are ignored. Each
line describes a ramp in the palette. There a five groups of numbers. Each group is
separated by white space. The numbers in each group are separated by commas. The
groups are respectively:

BRENDER TOOLS

Range (2 integers) The starting index and size of the ramp

Ambient (3 integers) The colour at the start of the ramp

Diffuse (3 integers) The colour at the cut point in the ramp

Specular (3 integers) The colour at the end of the ramp

Cut (1 float) The point where the ramp cuts from diffuse to specular

106

BRENDER TOOLS

The following is an example script that generates std.pal, the palette supplied with
BRender:

stdpal.txt

Standard palette

#

Range Ambient Diffuse Specular Cut
#

0,64 0,0,0 147,147,147 255,255,255 0.75 #Grey
64,32 0,0,0 60, 60,238 255,255,255 0.75 #Blue
96,32 0,0,0 60,238, 60 255,255,255 0.75 #Green

128,32 0,0,0 60,238,238 255,255,255 0.75 #Cyan
160,32 0,0,0 238, 60, 60 255,255,255 0.75 #Red
192,32 0,0,0 238, 60,238 255,255,255 0.75 #Magenta
224,32 0,0,0 238,238, 60 255,255,255 0.75 #Yellow

PALJOIN

PALJOIN is a command line tool that allows you to construct a colour palette using
sections of existing palettes.

Command line format: paljoin <input-text-file> <output-palette>

The input text file is read a line at a time. Lines beginning with ; or # are treated as
comments. Blank lines are ignored. A valid command lines contains a string
identifying the source palette, followed by index_base and range values
specifying which colours are to be copied from the source palette. An additional
index_base value locates the copied colour range in the output palette.

The text file illustrated below could be used to combine, in a single palette, the first
128 colours in a strip palette (strip.pal)and the last 128 colours in a texture palette
(texture.pal).

newpal.txt

#

Source_Palette Source_Index_Base Range Destination_Index_Base
strip.pal 0 128 0
texture.pal 128 128 128

The following command line would generate the palette described in newpal . txt,
and save it as new.pal:

paljoin newpal.txt new.pal

VIEWPAL

VIEWPAL is a command line tool that displays a palette on the screen.
Command line format: viewpal <input_palette>

All 256 colours are displayed, along with their respective palette indices
(0-255). To view std.pal, enter the following command line:

viewpal std.pal

Importing Models into BRender

When importing a model into BRender from a 3D modeller, there are three classes of

entity which you may need to import — texture maps, materials and geometry. Each

needs to be imported separately, then re-united inside BRender. If you are only

interested in importing model geometry, you can use GEOCONYV (or the 3DS2BR -

mod option) to import and convert . asc files. If you want to import materials

associated with a model, you will use 3DS2BR. TEXCONYV is used to import texture

maps. If you are working in true colour mode, importing models is an reasonably 107

straightforward process. Indexed colour is altogether more complicated due to the
complexities of palette management. Indexed colour is discussed first below. A
shorter section towards the end of the chapter covers true colour. This section is
largely a review of ground already covered.

Working with 8-bit Colour

When working in 8-bit colour you will need to formulate a strategy for palette
management. How you set up and manage your palette will depend on personal
preference and the requirements of your application. You may be happy to use the
palette supplied with BRender (std.pal) which offers a reasonably wide selection
of colours. If all your materials reference imported texture maps you may wish to
construct a palette and a shade table using only the colours in your texture maps. If
you are not using texture maps you may wish to construct a custom palette containing
the colours of the materials in your scenes. Alternatively, your palette may be divided
into two parts, one part containing strip colours for your non-textured materials, the

BRENDER TOOLS

other containing texture colours. Some possible palette management strategies are
considered below.

108

BRENDER TOOLS

Using the supplied palette (std.pal)
and shade table (shade.tab)

You may find that the palette and shade table supplied with BRender adequately
represent your scenes. In this case you will need to ensure suitable index_base and
index_range values are added to your material descriptions. You will also need to
quantize your texture maps to std.pal using TEXCONYV. When you quantize an
imported texture map to a palette, TEXCONYV takes each colour in the texture map
in turn, and selects the colour from the palette that most closely approximates that
colour. This new colour then replaces each instance of the original colour in the output
pixelmap. Note that std.pal contains a range of colours sufficiently general to
reproduce a reasonable representation of most scenes.

Colour Ramps in

std.pal
Range Colour
0-63 Grey

64-95 Blue
96-127 Green

128-159 Cyan

160-191 Red

192-223 Magenta

224-255 Yellow

The material script file illustrated below will display a blue shaded material when
rendering using std.pal. Note the index_base and index_range values. You
will need to ensure that the index_base and index_range values for all your
materials (whether saved as script files or in . mat format) reference the appropriate
colour in your palette.

cube8.mat
A plain blue material

material = [
identifier = "BLUE MATERIAL";
ambient = 0.05;
diffuse = 0.55;
specular = 0.4;
power = 10;
flags = [light, smooth];
index_base = 64;
index_range = 31;

3DS2BR doesn’t know how your hardware palette is set up. Materials imported using
the -mat command line option contain dummy index_base and index_range
values. Your application should set these fields to point to the correct palette indices
when the material is loaded. Material script files generated by 3DS2BR for non-
textured materials contain true colour information. You can use this data to add
appropriate index_base and index_range values to the script file for use in 8-bit
mode. Some examples will help clarify these issues.

Non-textured Materials

In Chapter 7 we extracted information describing the geometry and appearance of a
model from the 3D Studio file duck . 3ds using the following command line:

3DS2BR duck.3ds -nomatrix -mod duck.dat -scr duck.mat

For the purposes of this exercise, enter the following command line to extract material
descriptions from duck . 3ds and store them in duck .mat:

3DS2BR duck.3ds -scr duck.mat

The script file generated by 3DS2BR is shown below:

109

duck .mat

BRender Material Script

ambient = 0.679216;

diffuse = 0.679216;

specular 0.741569;

power = 23.770000;
17

7 p)
material = [FJ
identifier = "BLACK PLASTIC";)
flags = [light, smooth];
colour = [0,0,07; O
ambient = 0.000000; Eﬂ
diffuse = 0.000000;
specular = 1.000000;
power = 69.309998; :‘
1; m
material = [Q
identifier = "YELLOW PLASTIC";
flags = [light, smooth]; E:
colour = [202,179,52]; m
o
s

This script file can be used unaltered in true colour mode, as indeed it was in
BRTUTOR7.C described in Chapter 7. In order to use the materials described in
duck .mat in 8-bit mode, we need to add appropriate index_base and

110

BRENDER TOOLS

index_range values. It is likely that the exact colour will not be available in
std.pal, due to the 256 colour limitation. It should be possible, however, to find a
reasonable approximation.

duck8.mat

BRender Material Script

material = [
identifier = "BLACK PLASTIC";
flags = [light, smooth];
ambient = 0.000000;
diffuse = 0.000000;
specular = 1.000000;
power = 69.309998;
index_base = 0;
index_range = 0;

material = [
identifier = "YELLOW PLASTIC";
flags = [light, smooth];
ambient = 0.679216;
diffuse = 0.679216;
specular 0.741569;
power = 23.770000;
index_base = 224;
index_range = 25;
1;

An index_base value of 224 points to the beginning of the yellow colour ramp. The
colour range for this material is 224-248, essentially the yellow colour ramp. When
rendering BRender will select a shade of yellow from within this range according to
the current lighting level. Note that true colour information is redundant in 8-bit
mode and has been removed. This modified material script is stored on your Tutorial
Programs disk as duck 8 .mat. Compile and run BRTUTR7B. C to display a revolving
yellow duck in 8-bit mode.

Textured Materials

When 3DS2BR converts a textured material for use in BRender programs, the
resultant material file (binary or script) will contain a dummy texture map and a
dummy shade table. For instance, suppose the 3D Studio model being imported
contains a2 material named 'FACE OF THE MOON', which references a colour (or
texture) map called moonshot.gif. 3DS2BR will save a material file containing a
BRender material called ‘Face oF THE Moon’. This material will reference a dummy

BRender pixelmap called 'moonshot ' (note the . gif file extension has been
stripped away) and a dummy shade table named 'shade'.

You could convert moonshot .gif toa BRender . pix file using TEXCONV. Your
application would then need to load a file containing a pixelmap called 'moonshot’
(it doesn’t matter what the file is called) before loading and registering the file
containing the material 'FACE OF THE MOON'. If you don’t wish to use the texture
map in moonshot .gif, simply replace 'moonshot ' with the identifier of any
previously loaded and registered texture map. If you are using shade . tab, the shade
table supplied with BRender, you will need to change ' shade' to 'shade_table'
in the colour_map field. This is necessary because shade . tab uses the string
'shade_table"' asan identifier (an alternative would be to change the identifier in
shade.tabto 'shade' using TEXCONV -n). A further example should help
illuminate the above discussion.

The following command line imports a model of a fork and its associated material from
the standard 3D Studio model description file fork . 3ds:

3DS2BR fork.3ds -mod fork.dat -scr fork.mat

Both fork.3ds and the file containing its associated texture map, refmap . gif, can
be found on your Tutorial Programs disk. You will need to enter the command lines
in this example in order to display the imported fork model. Mesh data describing the
geometry of the converted model is stored in fork .dat. Enter the command line:

geoconv fork.dat -1
to display the following information on this newly created file:

GEOCONV 1.24 Copyright (C) 1994-1995 by Argonaut Technologies Limited
Models: 1
Verts Faces Edges Fgrps Vgrps Sort DOTQ Radius
fork 858 812 1648 1 1 858 ——— 3.05932
Materials: 1
CHROME GIFMAP

Scale the model (set radius to 1) and translate it to the origin (in its parent’s
co-ordinate space) as follows:

geoconv fork.dat -c¢ -n -o fork.dat

[
-
-

BRENDER TOOLS

112

BRENDER TOOLS

BRTUTR7B.C

/* Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.
* Program to Display a Revolving Yellow Duck (8-bit).
*/

#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"

int main(int argc, char **argv)
{
br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette;
br_actor *world, *observer, *duck;
int 1i;
br_material *mats([10]; /*for storing pointers to material descriptions*/

/*x**x%k**x Tnitialise BRender and Graphics Hardware ***x*xkkxkkxkkx/
BrBegin();
/*

* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrzZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);

back_buffer BrPixelmapMatch (screen_buffer, BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch(screen_buffer, BR_PMMATCH_DEPTH_16);

/*************** Bulld the World Database **********************/

world = BrActorAllocate (BR_ACTOR_NONE,NULL) ;
BrLightEnable (BrActorAdd (world, BrActorAllocate (BR_ACTOR_LIGHT,NULL))) ;

/*
* Load and Position Camera
*/
observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA,NULL)) ;
observer->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&observer->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),
BR_SCALAR(5.0));

/*

* Load and Apply Duck Materials

*/
i = BrFmtScriptMaterialLoadMany ("duck8.mat",mats, BR_ASIZE (mats)) ;
BrMaterialAddMany (mats, i) ;

/*
* Load and Position Duck Model
*/
duck = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
duck->model = BrModellLoad("duck.dat");
BrModelAdd (duck->model) ;
duck->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34RotateX (&duck—>t.t.mat, BR_ANGLE_DEG(30)) ;

/********************** Animation Loop ***********************/

for (i=0; i < 200; i++)
BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;
BrZbSceneRender (world, observer, back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateX (&duck->t.t.mat, BR_ANGLE_DEG(2.0));

/*
* Close down
*/
BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZbEnd () ;

[
-
w

BrEnd () ;
return 0;

}
BRTutr7b.c

BRENDER TOOLS

114

BRENDER TOOLS

The model described in fork.dat can now be used in any BRender program. The
material file, fork .mat, generated by 3DS2BR is given below:

fork.mat

BRender Material Script
#

material = [
identifier = "CHROME GIFMAP";
flags = [light, smooth,environment];
ambient = 0.000000;
diffuse = 0.000000;
specular =0.992941;
power = 69.340004;

index_base = 64;
index_range = 31;
colour_map = "REFMAP";
index_shade = "shade";

1

Note that the identifier used for BRender’s standard shade table is “shade_table’,
and not ‘ shade’. The script file, fork .mat, will need to be edited accordingly.

With texture mapped materials, index_base is used as a row offset into a shade
table. index_range determines the number of shades (or lighting levels) available,
starting at index_base. The standard shade table has 64 rows (this is also the default
number of rows generated by MKSHADES, the utility used to create shade tables
discussed later in this chapter). Not surprisingly, then, the default index_base is 0
and the default index_range is 63.

Unless you are using a shade table with non standard dimensions (or you want to
restrict the range of shades available), you can omit the index_base and
index_range fields completely. Alternatively, specify the default values, 0 and 63.

The revised script file is given below:

fork.mat

BRender Material Script

material = [
identifier = "CHROME GIFMAP";
flags = [light, smooth,environment];
ambient = 0.000000;
diffuse = 0.000000;
specular =0.992941;
power = 69.340004;
colour_map = "REFMAP";
index_shade = "shade_table";

17

This material references a dummy texture map called ‘REFMAP’. In order to
replicate the image created in 3D Studio, the original . gif file needs to be converted
to BRender . pix format:

TEXCONV refmap.gif -n REFMAP -c BR_PMT_INDEX_ 8 -Q std.pal -o
refmap.pix

The following is displayed:

TEXCONV 1.6 Copyright (C) 1994 by Argonaut Technologies Limited
Loaded ‘refmap.gif’ as BR_PMT_INDEX_8(320,200)

Palette ‘refmap.gif’ BR_PMT_RGBX_888(256)

‘refmap.gif’ assigned new identifier ‘REFMAP’

Converted ‘REFMAP’ BR_PMT_INDEX_8 (8 bit) to BR_PMT_INDEX_8 (8 bit)
Quantizing ‘REFMAP’ to palette ‘Palette’ using 256 colours from the
range 0-255

Output pixelmap ‘refmap.pix’

The —n option ensures that the identifier, ‘REFMAP’, is the same as that used in the
material script file (alternatively, we could have changed the line in the script file
specifying the texture map to colour_map = refmap.gif)

The -c option converts the input file to the required BRender pixelmap type (where
necessary).

The —-Q option quantizes the colours in the texture map to the specified palette.

The —o option generates an output file in accordance with the specified command
line options.

Compile and run BRTUTORY. C to display a chrome-textured fork. Please note that
this program will not work unless the command lines specified above have been
entered. Only fork.3ds and refmap.gif are included on the Tutorial Programs
disk. You will need to run 3DS2BR to generate fork .dat and fork.mat,

[
-
wn

BRENDER TOOLS

116

BRENDER TOOLS

GEOCONYV to convert fork.dat, and TEXCONV to convert and quantize
refmap.qgif. You will also need to edit fork .mat as indicated.

BRTUTORO. C is almost identical to BRTUTR8B. C, encountered in Chapter 7. A fork
model is loaded instead of the duck model of BRTUTR8B. C, and the 'gold"
textured material is replaced with a material that references the chrome texture in
refmap.pix.

To recap:

To import 3D Studio models and associated materials:
Run 3DS2BR to generate BRender files (. dat, .mat, . log etc.)
e.g. 3DS2BR fork.3ds -mod fork.dat -scr fork.mat
Run GEOCONY to tailor model geometry to your BRender program:
e.g.geoconv fork.dat -c -n -o fork.dat
Run TEXCONYV to convert texture maps to BRender format and to quantize
them to your palette (std.pal if using the palette supplied with BRender):
e.g. texconv refmap.gif -n REFMAP -c BR_PMT_INDEX_ 8 -Q
std.pal

-0 refmap.pix

For non-textured materials, ensure that appropriate index_base and
index_range values are added. For textured materials, ensure that the texture
map references used in material descriptions match the identifiers stored in the
relevant .pix files. Also, ensure that shade table references match the appropri-
ate shade table identifier (shade_table in the case of the standard shade
table). Ensure that appropriate index_base and index_range values are
entered if using a shade table with non-standard dimensions. Otherwise accept
the default values.

Creating a Texture Palette

If all your materials reference texture maps, you may wish to construct a palette and a
shade table using only the colours in these texture maps. TEXCONYV can be used to
generate an optimal palette for a number of texture maps. This palette could then be
defined as the texture palette, to be used for all textures.

Begin by assembling your textures and listing them in a text file (to keep command
line length within manageable proportions). Suppose your project uses the following
textures, listed in a text file textures:

——————————————————————————— textures
gold.gif

refmap.gif

buttons.gif

canada.gif

cloud.gif

cruiser.gif
dash.gif
graymarb.gif

Note that all the above textures are standard 3D Studio .gif files. You may want to
copy these files (or your own textures) to your current directory before proceeding, so
you can work through this example.

It is worth noting that colour 0 is always transparent for textures in 8-bit colour

mode. For this reason it is advisable to quantize and remap between colours 1 and 255.

The following command line loads the specified pixelmaps, converts them to
BRender 8-bit format, quantizes and remaps to 255 colours in the range

1-255 (this avoids reassigning colour 0, which would be treated as transparent by the
renderer), and creates an output palette, texture.pal, containing these colours.

texconv @textures -c BR_PMT_INDEX_8 -R 1,255 -0 palette -o
texture.pal

In short, TEXCONYV examines the specified textures maps and comes up with what,
in its estimation, is the best combination of 255 colours that could be used to
reproduce these textures. Note that you will still need to run TEXCONYV to generate
a BRender . pix file for each or your textures.

Enter the following command line to display the palette:
viewpal texture.pal

VIEWPAL displays all 256 colours in a palette, along with their respective palette
indices (0-255). The next step is to create a shade table based on this palette.

1 b H - 1
11 86 21 28 @239 30 31
e

bily
HO
HE 106 101
112
L oH
1LY
(L0
116
192
=if:]
ool
=

Figure 41 A palette displayed using VIEWPAL

[
-
|

BRENDER TOOLS

118

BRENDER TOOLS

BRTUTORY.C

/* Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.

* Program to Display a Chrome-Textured Fork (8-bit)
*/

#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"

int main(int argc, char **argv)

{

br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette, *shade;
br_actor *world, *observer, *fork;

br_pixelmap *chrome_pm;

int 1i;

/****** Tnitialise Renderer and Set Screen Resolution *****x*xx/

BrBegin();

/*
* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrzZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);

back_buffer = BrPixelmapMatch (screen_buffer,BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch(screen_buffer, BR_PMMATCH_DEPTH_16);

/*
* Load Shade Table
*/
shade = BrPixelmapLoad("shade.tab");
if (shade==NULL)
BR_ERRORO ("Couldn't load shade.tab");
BrTableAdd (shade) ;

/*************** Bulld the World Database **********************/

world = BrActorAllocate (BR_ACTOR_NONE, NULL)
BrLightEnable (BrActorAdd (world, BrActorAllocate(BR_ACTOR_LIGHT,NULL))) ;

/*

* Load and Position Camera

*/
observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA,NULL)) ;
observer->t.type = BR_TRANSFORM_MATRIX34;

BrMatrix34Translate (&observer->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),
BR_SCALAR(5.0));

/*
* Load and Register chrome Texture
*/
chrome_pm = BrPixelmapLoad("refmap.pix");
if (chrome_pm==NULL)
BR_ERRORO ("Couldn’t load refmap.pix");
BrMapAdd (chrome_pm) ;
/*
* Load and Apply fork Material
*/
BrMaterialAdd (BrFmtScriptMaterialLoad("fork.mat"));

/*
* Load and Position fork Actor
*/
fork = BrActorAdd(world, BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
fork->model = BrModelLoad("fork.dat");
BrModelAdd (fork->model) ;
BrModelApplyMap (fork->model, BR_APPLYMAP_ PLANE,NULL) ;
fork->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34RotateX (&fork->t.t.mat, BR_ANGLE_DEG(30)) ;
fork->material = BrMaterialFind("CHROME GIFMAP") ;

[
-
o

/********************** Animation LOOp ***********************/

for (i=0; i < 200; i++) {
BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;
BrZbSceneRender (world, observer, back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateX (&fork->t.t.mat, BR_ANGLE_DEG(2.0));

/*

* Close down

*/
BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZbEnd () ;

BRENDER TOOLS

BrEnd () ;
return 0;

BRTUTORY9.C

120

BRENDER TOOLS

The following command line generates a shade table, newshade. tab from the
source palette texture.pal:

mkshades texture.pal -r 1,255 -o newshade.tab
Enter the following command line to display the shade table:
texconv -I pix newshade.tab -P texture.pal -c BR_PMT_INDEX_ 8 -v

newshade. tab isanarray of 255 columns by 64 rows. Each column indexes a colour
in texture.pal. Each row contains indices to shades of its associated colour
representing 64 lighting levels.

Figure 42 A shade table displayed using TEXCONV

Note that the identifier shade_table has been assigned to newshade . tab. This
could be changed using the —n option:

texconv -I pix newshade.tab -n newname -0 pix -o newshade.tab
To recap:

To create a custom texture palette and shade table:
Assemble your textures and list them in a text file.
Run TEXCONV to generate a palette based on your textures:
texconv @textures —-c BR_PMT_INDEX 8 -R 1,255 -0 palette -o
texture.pal
For each of your textures, run TEXCONYV to convert them to BRender format
and to quantize them to your palette:
e.g. texconv gold.gif -c BR_PMT_INDEX_ 8 -Q texture.pal
-0 gold.pix
Run MKSHADES to generate a shade table from the texture palette:
e.g. mkshades texture.pal -r 1,255 -o newshade.tab

Creating a Custom Palette With Strip Colours

If you are not using texture maps, you may wish to build a custom palette containing
the colours of the materials in your scenes using MKRANGES. MKRANGES is a
utility for building ramped, or strip, palettes from information contained in a text file.

For imported materials, material colours are specified in the text files generated using
the 3DS2BR -mod and —scr options. If you are intending to construct a palette based
on the colours of your materials, compile a list of colours from your material script files
or log files (or your material data structure if not using material script files). Then use

this information to create a text file for MKRANGES. Remember to ensure
appropriate index_base and index_range values have been specified for all your
materials.

Supposing you have compiled the following list of colours from your material script
files or log files:

RGB
Colour Vgue
Aqua Glaze 0,162,160
Green Plastic 65,204,77
Plum Plastic 130,0,91
Old Gold 152,82,0
Orange 166,66,0
White Paint 204,204,189
Red Plastic 166,0,0
Blue Metallic 39,42,79

You could then prepare a text file for MKRANGES as follows:

strippal.txt

Range Ambient Diffuse Specular Cut
#
0,162,160 255,255,255 0.75 #Aqua Glaze
65,204,77 255,255,255 0.75 #Green
Plastic

0,32 0,0,
0,0

0
32,32 ,0,0

64,32 0,0,0 130,0,91 255,255,255 0.75 #Plum Plastic

96,32 0,0,0 152,82,0 255,255,255 0.75 #01d Gold

128,32 0,0,0 166,66,0 255,255,255 0.75 #0Orange

160,32 0,0,0 204,204, 255,255,255 0.75 #White Paint
189

192,32 0,0,0 166,0,0 255,255,255 0.75 #Red Plastic

224,32 0,0,0 39,42,79 255,255,255 0.75 #Blue

Metallic

Then run MKRANGES to create your custom palette:
mkranges strippal.txt strip.pal

The text file ‘strippal. txt’ can be found on your Tutorial Programs disk. Having
created a new palette, you can view it by entering:

texconv -I pix strip.pal -c BR_PMT_INDEX_8 -v
or:

viewpal strip.pal

121

BRENDER TOOLS

122

BRENDER TOOLS

You could experiment by loading strip.pal in BRTUTR7B. C above, instead of
std.pal, and varying the index_base and index_range values to select the
newly generated colours.

Creating a Custom Palette With Strip Colours and
Texture Colours

If you are using both textured and non-textured materials, your palette may be
divided into two parts, one part containing strip colours for your non-textured
materials, the other containing texture colours. To achieve this you will need to create
separate strip colour and texture palettes using the utilities provided and
subsequently combine them using PALJOIN.

Suppose your project uses the textures in textures above, and the colours specified
in strippal.txt. Let’s assume that you have decided to divide your palette
equally between strip colours and textures.

Project Palette

|<—==-0-127-—-->|<-——-128-255-———>|
1. You could begin by generating a texture palette and shade table:
Run TEXCONYV to generate a texture palette:

texconv @textures -c BR_PMT_INDEX_8 -R 128,128 -0 palette
-0 texture.pal

For each of the texture maps in textures, quantize and remap to the specified range:
e.g. texconv gold.gif -c BR_PMT_INDEX 8 -Q texture.pal -R 128,
128

-0 pixelmap -o gold.pix

Run MKSHADES to create a shade table from the texture palette:
mkshades texture.pal -r 128,128 -o newshade.tab
2. Generate a strip palette using only the first 128 colours:

Edit strippal.txt as follows:

strippal.txt

Range Ambien Diffuse Specular Cut
t
#
0,16 0,0,0 0,162,160 255,255,255 0.75 #Aqua Glaze
16,16 0,0,0 65,204,77 255,255,255 0.75 #Green Plastic
32,16 0,0,0 130,0,91 255,255,255 0.75 #Plum Plastic

.75 #01d Gold

.75 #Orange

.75 #White Paint
.75 #Red Plastic
.75 #Blue Metallic

48,16 0,0,0 152,82,0 255,255,255
64,16 0,0,0 166,66,0 255,255,255
80,16 0,0,0 204,204,189 255,255,255
96,16 0,0,0 166,0,0 255,255,255
112,16 0,0,0 39,42,79 255,255,255

o O O O o

Run MKRANGES to generate a strip palette:
MKRANGES strippal.txt strip.pal

The strip colours are located in the first 128 locations in strip.pal. The remaining
locations are ‘empty’. Texture colours occupy the second half of texture.pal. This
can be visually verified by running VIEWPAL to view the palettes on the screen.
Enter:

viewpal strip.pal
to display the strip palette. Enter:
viewpal texture.pal
to display the texture palette.
3. Combine your texture and strip palettes into a single palette.

Generate the following text file to combine in a single palette the first 128 colours in
the strip palette and the last 128 colours in the texture palette.

newpal.txt

Source_Palette Source_Index_Bas Range Destination_Index_Base
e
strip.pal 0 128 0
texture.pal 128 128 128

Then run the following command line to generate the output palette, new.pal,
containing all the required colours:

paljoin newpal.txt new.pal

Enter:
viewpal new.pal

to view new.pal.

The newly generated palette will need to be assigned an identifier:
texconv -I pix new.pal -n palette -0 pix -o new.pal

The best way to handle indexed colour is to pre-define a set of colours for a given
project, use MKANGES to generate a strip palette using these colours, then define a
range of palette-indexed materials based on these colours. Similarly with texture maps
— prepare your textures, then run TEXCONV to generate an optimal texture palette
and MKSHADES to generate a shade table based on the optimised palette.

123

BRENDER TOOLS

124

BRENDER TOOLS

Thereafter, use only the pre-defined materials and textures. This involves much less
work than starting with your artwork and trying to hand-convert and optimise the
entire project’s artwork once it is completed.

Working with True Colour

If you are working in true colour mode, you won’t need to use MKSHADES or
MKRANGES, since there are no palettes or shade tables to worry about. 3DS2BR can
be used to import model geometry and materials. TEXCONYV is used to import
textures. If you are only interested in a model’s geometry, GEOCONYV can be used to
import .asc files etc. Much of what you need to know to import model geometry,
materials and textures has already been covered, either above or in Chapters 6 and 7.
What follows, therefore, is a brief review.

Importing Model Geometry

Enter the following command line to import the 3D Studio . asc file fork.asc
(fork.asc can be found on your Tutorial Programs disk),

geoconv fork.asc -c¢ -n -o fork.dat

Importing Geometry and Materials

1. Use 3DS2BR to convert 3D Studio . 3DS files to BRender format. The following
command line extracts data describing model geometry from the 3D Studio file
duck . 3ds and stores it in duck . dat, and creates a material script file
describing the converted materials:

3DS2BR duck.3ds -nomatrix -mod duck.dat -scr duck.scr

2. Use GEOCONY to convert model geometry to a format suitable for BRender.
The following command line collapses data into a single model, centres the
model at the origin and normalises it to fit a sphere of radius 1:

geoconv duck.dat -m -c¢ -n -o duck.dat

Importing Texture Maps

Use TEXCONV to convert a pixelmap to BRender pixelmap format. The following
command line generates a 15-bit BRender pixelmap from a . gif file:

texconv gold.gif -c BR_PMT_RGB_555 -o goldl5.pix

A Worked Example

Let’s work through an example.

Suppose you want to import a model whose geometry is described in the file
fork.asc. Suppose further that the material you want to assign to this model is
called GRIDMAP, and is defined in the 3D Studio file 1ight . 3ds. GRIDMAP is a
textured material that references a texture map called TILEOO11 in the file
tile0011.tga.Notethat fork.asc,light.3dsandtile0011.tgaareallon
your Tutorial Programs disk.

Start by importing the model geometry:
geoconv fork.asc -c¢ -n -o fork.dat
Then import the material and store it in a material script file:
3DS2BR light.3ds -scr fork.mat
Finally, import the texture map:
texconv tile00ll.tga -n TILEOO1ll -c BR_PMT_RGB_555 -o tile.pix

The —n option sets the identifier to TILEOO11 to be consistent with that contained
in the colour_map field in the recently generated script file fork .mat. The -c

125

and —-o options generate a . pix file in BRender 15-bit format.

The material script file generated by 3DS2BR is shown below:

fork.mat

BRENDER TOOLS

126

BRENDER TOOLS

BRender Material Script

#

material = [

17

material = [

identifier = "WHITE PLASTIC";
flags = [light, smooth];
colour = [206,206,206];

ambient = 0.807843;
diffuse = 0.807843;
specular = 1.000000;
power = 52.480000;

identifier = "GRIDMAP";
flags = [light, smooth];
colour = [0,0,07;

ambient = 0.000000;
diffuse = 0.000000;
power = 1.000000;

index_base = 64;
index_range = 31;
colour_map = "TILEOO11l";
index_shade = "shade";

STOOL d4dAdANAYT4

[
[\
v

128

BRENDER TOOLS

BRTUTR10.C

/*
* Copyright (c) 1996 Argonaut Technologies Limited. All rights reserved.

126

126

#include <stddef.h>
#include <stdio.h>
#include "brender.h"
#include "dosio.h"

int main(int argc, char **argv)

{

br_pixelmap *screen_buffer, *back_buffer, *depth_buffer, *palette;
br_pixelmap *tile_pm;

br_actor *world, *observer, *fork;

int 1i;

br_material *mats[10];

/**x%x%kx* Tnitialise Renderer and Set Screen Resolution ***x*xxxxx/

BrBegin();

/*
* Initialise screen buffer and set up CLUT (ignored in true colour)

*/

BrzZbBegin(screen_buffer->type, BR_PMT_DEPTH_16);

back_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_OFFSCREEN) ;
depth_buffer = BrPixelmapMatch(screen_buffer,BR_PMMATCH_DEPTH_16);

/*************** Build the World Database **********************/

world = BrActorAllocate (BR_ACTOR_NONE,NULL)
BrLightEnable (BrActorAdd (world, BrActorAllocate (BR_ACTOR_LIGHT,NULL))) ;

/*
* Load and Position Camera
*/
observer = BrActorAdd(world,BrActorAllocate (BR_ACTOR_CAMERA, NULL)) ;
observer->t.type = BR_TRANSFORM_MATRIX34;
BrMatrix34Translate (&observer—->t.t.mat, BR_SCALAR(0.0),BR_SCALAR(0.0),
BR_SCALAR(5.0));

/*
* Load and Register TILEOOll Texture
*/
tile_pm = BrPixelmapLoad("tile.pix");
if (tile_pm==NULL)
BR_ERRORO ("Couldn’t load tile.pix");

BrMapAdd (tile_pm);

/*
* Load and Apply fork Material
*/
i = BrFmtScriptMateriallLoadMany ("fork.mat",mats, BR_ASIZE (mats));
BrMaterialAddMany (mats, i) ;

/*

* Load and Position fork Actor

*/
fork = BrActorAdd(world,BrActorAllocate (BR_ACTOR_MODEL,NULL)) ;
fork->model = BrModellLoad("fork.dat")
BrModelAdd (fork->model) ;
BrModelApplyMap (fork—>model, BR_APPLYMAP_ PLANE, NULL) ;
fork->t.type = BR_TRANSFORM_MATRIX34;

/*
* Assign fork Material
*/
fork->material = BrMaterialFind ("GRIDMAP");

/********************** Animation LOOp ***********************/

for (i=0; 1 < 200; i++) {
BrPixelmapFill (back_buffer,0);
BrPixelmapFill (depth_buffer, OXFFFFFFFF) ;

BrZbSceneRender (world, observer, back_buffer,depth_buffer);
BrPixelmapDoubleBuffer (screen_buffer,back_buffer);
BrMatrix34PostRotateX (&fork->t.t.mat, BR_ANGLE_DEG(2.0));

/*

* Close down

*/
BrPixelmapFree (depth_buffer);
BrPixelmapFree (back_buffer);
BrZbEnd () ;

BrEnd () ;
return 0;

BRTUTR10.C

129

BRENDER TOOLS

130

BRENDER TOOLS

The material WHITE PLASTIC, imported from 1ight.3ds along with
GRIDMAP, could be deleted. The index_base, index_range and
index_shade fields could also be deleted, since we are working in non-indexed
mode. The colour field is also irrelevant for a textured material. If your version of
BRender does not support lit textures, the ambient, diffuse and power fields could
also be eliminated (refer to your installation guide for details). Finally, your version of
BRender might not support smooth shading, in which case this flag should be reset. If
you were running BRender x86, Version 1.2, for example, which doesn’t support light
or smooth shaded textures in true colour mode, the following minimalist script would
suffice:

fork.mat

BRender Material Script

#

material = [
identifier = "GRIDMAP";
flags = [];
colour_map = "TILEOO11l";

1

We now have:
a file, fork.dat, describing model geometry
a material, GRIDMAP, described in the material script file fork .mat
GRIDMAP references a texture map TILE0OO11, contained in tile.pix.

Note that the model described in fork . asc was saved without texture co-ordinates.
It was therefore necessary to call BrMode 1ApplyMap to generate texture co-
ordinates for the model’s vertices:

BrModelApplyMap (fork->model, BR_APPLYMAP_PLANE,NULL) ;

Compile and run BRTUTR10. C to display a texture mapped fork. Note that only the
source files fork.asc, light .3ds and tile0011. tga are included on your
Tutorial Programs disk. You will need to run the command lines described above to
generate fork.dat, fork.mat and tile.pix, before attempting to compile
BRTUTR10.C.

STOOL d4dAdANAYT4

131

132

STOOL d4dAdANAYT4

