Technical
Reference
Manual

BRender

BRender is a trademark of Argonaut Technologies Limited, which may be registered in certain
jurisdictions. Use of BRender is governed by the terms of the licence agreement included with the
product.

Argonaut Technologies Limited
Capitol House

Capitol Way

Colindale

London NW9 0DZ

United Kingdom

Telephone: +44 (181) 358 2993
Facsimile: +44 (181) 358 2920
Internet: brender@argonaut.com

Acknowledgements

Programming Sam Littlewood Dan Piponi
Simon Everett Philip Pratt
Ports Simon Everett Philip Pratt
Patrick Buckland Zareh Johannes
Anthony Savva Stainless Software Ltd

Testing Philip Pratt
Project Management Stefano Zammattio

Technical Reference Crosbie Fitch Philip Pratt
Manual

Tutorial & Robbie McQuaid
Installation Guides

Marketing Paul Ayscough Mitra Faulkner
Sales Edwin Masterson
Artwork Michel Bowes

Technical Support Neela Dass Tony Roberts
John Gay
With Thanks to Pete Warnes Mike Day
Tim Gummer Vinay Gupta
Marcia Petterson Jez San
Disclaimer

Argonaut Technologies Limited makes no expressed or implied warranty with respect to the
contents of this manual, and assumes no responsibility for any errors or omissions which it may
contain. No liability is assumed for any direct, indirect, or consequential damages or losses arising
in connection with the information or examples described herein.

Trademarks
3D Studio is a registered trademark of Autodesk, Inc.
Windows, Windows 95 and Windows N'T are registered trademarks of Microsoft Corporation

Where applicable the company and product names used in this manual are registered trademarks of
their respective owners.

Contents

I Introduction ...
2 Organisation of this Manual ...

3 Functions (Structured Reference)...............................

Library Initialisation & Termination 10
Scene Modelling 12
Scene Rendering 26
Image Support 41
Maths 45
Resource Management 48
Memory Management 53
Filing System Support 57
Diagnostic Support 65
Miscellaneous 69
Platform Specific Support 70
4 Data Structures (Alphabetical Reference).................... 73
br_actor 74
br_actor_enum_cbfn 99
br_allocator 100
br_angle 103
br_boolean 105
br_bounds 106
br_camera 108
br_colour 112

Copyright © 1996 Argonaut Technologies Limited 1 1 1

Contents

br_diag_failure_cbfn
br_diag_warning_cbfn
br_diaghandler
br_eculer

br_face

br_filesystem
br_fixed_[Is][su][f]
br_font

br_fraction
br_fvector2
br_fvector3
br_fvector4
br_int_8/16/32
br_light
br_map_enum_cbfn
br_map_find_cbfn
br_material
br_material_enum_cbfn
br_material_find_cbfn
br_matrix23
br_matrix34
br_matrix4
br_mode_test_cbfn
br_model
br_model_custom_cbfn
br_model_enum_cbfn
br_model_find_cbfn
br_modelpick2d_cbfn
br_order_table
br_pick2d_cbfn
br_pick3d_cbfn

114
115
116
119
123
126
130
135
139
141
142
143
144
145
150
151
152
170
171
172
188
215
227
228
247
255
256
257
259
267
269

Copyright © 1996 Argonaut Technologies Limited

Contents

br_pixelmap 271
br_pool 298
br_pool_block 302
br_primitive 304
br_primitive_cbfn 307
br_quat 311
br_renderbounds_cbfn 317
br_resclass_enum_cbfn 320
br_resclass_find_cbfn 321
br_resenum_cbfn 322
br_resource_class 323
br_resourcefree_cbfn 330
br_scalar 331
br_size t 335
br_table_enum_cbfn 336
br_table_find_cbfn 337
br_transform 338
br_ufraction 345
br_uint_8/16/32 347
br_vector2 348
br_vector3 355
br_vector4 364
br_vertex 366
brfile_advance_cbfn 369
brfile_attributes_cbfn 370
brfile_close_cbfn 371
brfile_eof _cbfn 372
brfile_getchr_cbfn 373
brfile_getline_cbfn 374
brfile_open_read_cbfn 375
brfile_open_write_cbfn 377

Copyright © 1996 Argonaut Technologies Limited V

Contents

brfile_putchr_cbfn 378
brfile_putline_cbfn 379
brfile_read_cbfn 380
brfile_write_cbfn 381
brmem_allocate_cbfn 382
brmem_free_cbfn 384
brmem_inquire_cbfn 385
Indices. ... 387
Macro Index 388
Function Index 391
General Index 395

V1 Copyright © 1996 Argonaut Technologies Limited

Introduction 1

Overview

BRender is an extremely powerful real-time 3D graphics library, with a comprehensive Application
Programming Interface (API), facilitating rapid and intuitive 3D development.

The libraries have an elegant conceptual design throughout and are, as far as possible, platform
independent. In brief, they provide functions and data structures relevant to the following areas:
Hierarchical organisation of objects constituting a scene

Lights, cameras and models

Efficient handling of items in a ‘world database’

Texture and environment mapping

Rendering, in a number of styles

Scene picking and elementary collision detection

Mathematical primitives, including: scalars, angles, quaternions, Euler angles,

vectors and matrices.

Transparently selectable, fixed or floating point numeric representation

e File systems, memory management and diagnostics

Typically, a BRender application will perform the following tasks:
e [Initialisation

Importing or generating data (models, materials and textures)
Rendering scenes

Modification of object positions and orientations

User interaction

What is BRender?

BRender is a rendering engine, the ‘bit of magic in the middle’ that turns a scene into an image. It is
the TV camera of virtual reality, translating an abstract description of a set, with its actors, cameras
and lights, into a picture on a screen.

BRender is a combination of the most recent research in 3D graphics techniques and algorithms, and
painstaking efforts to translate those algorithms into streamlined, lean, mean and highly optimised C
code. Efficiency notwithstanding, BRender has always been designed with cross-platform portability,
a wide range of useful features, and general purpose application, firmly in mind.

BRender takes the form of a C library, a set of C headers and library files that you build into your
application. This lets you concentrate solely upon the task of describing scenes, modelling them and
presenting them to the user. BRender takes care of all the hard work involved in positioning items in
a scene, lighting them, applying special effects, and from a given camera specification, working out
what’s in the image, and rendering it (clipping, hidden surface removal, transparency, reflection,
etc.).

The BRender C Library not only provides access to the rendering engine, but also facilities at each
end of the process: describing a scene and processing the resulting image.

2 Copyright © 1996 Argonaut Technologies Limited

BRender turns a description of a scene into an image

Scenes in 3D worlds are described to BRender in terms of components called actors. Each actor
represents a frame of reference in which geometric models (objects, shapes, polyhedra, etc.) and other
actors can be positioned and oriented. This scene description often builds up to a fairly sizable
hierarchical structure.

Actors may perform a variety of different functions. There are three primary types of actor: model
actors, which define shapes and their surface properties; light actors, which provide light with which
models can be seen; and camera actors, which determine the viewpoint from which a scene is
rendered into a 2D image.

It is the application’s task to describe the scene in terms of an actor hierarchy, and BRender’s task to
turn this description into a 2D image, i.e. rendering it. However, although BRender is responsible for
performing such rendering as efficiently as possible, the application is just as responsible for
describing the scene as efficiently as possible. Both application and renderer must be optimised if
high performance is to be achieved. BRender cannot compensate for a poorly written application. So,
let’s work in harmony to help produce extreme, jaw dropping applications.

Why is BRender so good?

The development team behind BRender includes experts with considerable experience in various
fields including: 3D scene description and modelling, 3D algorithms, 3D graphics hardware, video
games development, advanced mathematics, compiler and microprocessor design.

Intense research and development over the last few years has culminated in what we believe is the
best portable, all-round 3D rendering system available.

Copyright © 1996 Argonaut Technologies Limited 3

Organisation

of this 2

Manual

Objective

The BRender Technical Reference Manual is designed to provide a reference for the developer who
has started working with BRender, and to answer as many questions about the technical details of the
BRender API as possible.

Audience

This manual is for all users of BRender that require detailed technical information. It is not intended
as a 3D graphics tutorial or C programming tutorial. 3D application developers and programmers will
need to be fully conversant with contemporary 3D graphics technology (ideally also having an
appreciation of the lower level aspects) and considerably experienced at C programming.

Coverage

This manual only covers the BRender API, it does not cover platform specific support libraries,
hardware or performance issues, nor does it provide introductory or tutorial material. Although it may
provide some background, or suggestions for use, the manual is primarily concerned with providing
reference documentation.

Organisation

Given that this manual is likely to be used from beginner as much as expert or intermediate, there is
inevitably a compromise that has to be made in how the manual is organised. While the beginner
might appreciate a step by step, procedural oriented manual (getting gradually more sophisticated
through the pages), an expert might prefer everything arranged alphabetically as a pure reference.
The compromise we have made is to have an initial section which describes the API in a structured
way, with each aspect described in context, followed by a section with data structures in alphabetical
order and the set of functions relevant to them. This is suitable for the intermediate to advanced
developer, who has got up to speed with BRender, but doesn’t yet know it inside out. Thus, a more
structured organisation (than purely alphabetical) is required, but not so structured as to impede
location. There is always going to be a steep learning curve for such a complex product as BRender,
so introductory and tutorial material has been supplied separately.

Note that while the installation guides cover some technical material associated with particular
platforms, the BRender API is covered in a single volume and includes all the inevitable platform
variations. This is useful for giving an appreciation of the differences between function and
performance across platforms, and should encourage developers to cater for such variation at the
design stage.

6 Copyright © 1996 Argonaut Technologies Limited

The API Function

Each BRender function is described in a structured way using the following sub-headings:

Description The function is briefly described

Declaration The simple C declaration

Arguments Each argument or parameter to the function is described

Preconditions |Any entry conditions are detailed

Effects Any effects (apart from producing a possible result) the function has are described
Result The function result is described

Remarks Any remarks concerning caveats, possible uses, misunderstandings, etc.
Example A brief source code extract placing the function usage in context

See Also Any data structures or functions that may be of relevant interest

The Data Structure

Each BRender data structure is described in a structured way using the following sub-headings:

The Structure

The data structure is a C struct data type

The Integral Type

The data structure is a basic type, based on a fundamental type such as int or long

The Call-back

The data structure describes a function pointer, usually for a call-back function

Function

Members Public members of structures are described in detail

Specification The task of a call-back function is defined

Operations Functions operating upon one or more instances of this structure or type

Arithmetic Operations enabling this structure or type to be operated upon as though it were a simple
type such as int

Comparison Functions providing a means to quantitively compare two instances of this structure or
type

Conversion Functions converting this structure or type into another

Copy/Assign Methods and functions to use to assign or duplicate this structure or type

Access & Maintenance

How the data structure or type is accessed and maintained by BRender and the
application

Referencing &
Lifetime

How the data structure can be referenced, and how long it should be maintained by
BRender and the application

Initialisation

How the data structure or type can be initialised

Construction &
Destruction

How the data structure should be created in memory and destroyed

Supplementary

Informational functions available for the data structure, not particularly concerned with
its function

Import & Export

How the data structure may be created from, or written to, an external file

Platform Specific

Any platform specific differences relating to this data structure or its functions

Copyright © 1996 Argonaut Technologies Limited

Using this Manual

It is a good idea to skim through the entire manual first, just to familiarise yourself with the API. If
you have a particular question concerning an aspect of the API, try to locate relevant documentation
in the manual using the contents, function index, full index, or by leafing through appropriate
sections. All functions and data structures have a subscript cross-reference to the page number on
which they are described.

Typographic conventions
Throughout this manual, syntax, arguments, definitions and example code are in a typewriter-like
font, to distinguish them from normal text. For example:
void BrTransformToTransform(br_transform *dest, const br_transform *src);
or

BR_ACTOR_CAMERA

Most public BRender functions have names of the form BrFunctionName (), i.e. with a prefix ‘Br’
and a case-separated name’. Most public BRender data structures have names of the form
br_structure_name, i.c. with a prefix br_ and an underscore separated name.

* Note though, that due to historical precedent, pixel map is considered a single word in function names, thus
BrPixelmapCopy ().

8 Copyright © 1996 Argonaut Technologies Limited

Functions
(Structured R 3

eterence)

Library Initialisation & Termination

Library Initialisation & T'ermination

Initialisation

The BRender library requires more than static initialisation, and needs an opportunity to perform
various initialisations before most BRender functions are called. There is, as yet, no standard for
library initialisation, so the function BrBegin () ,, is provided as a means of explicitly initialising the
BRender library.

However, there are a few things that should precede BrBegin () ,, and in the following order:

1. Install a diagnostic handler using BrDiagHandlerSet () ,,, (See Diagnostic Support, page 66)
2. Install a memory allocator using BrAllocatorSet () ; (See Memory Management, page 54)
3. Install a filing system using BrFilesystemSet () ;, (See Filing System Support, page 58)

If any of these steps are not performed, BrBegin (), will perform the equivalent to a usable default
(appropriate to the platform). Which steps you perform depends upon your application’s
requirements.

BrBegin ()
Description: Initialise BRender. This function must be called before most BRender functions
are used.
Declaration: void BrBegin (void)

Preconditions: ~ Static initialisation has completed (main () has been entered). The BRender
library has not yet been initialised, or has been terminated.

Effects: Installs any missing handlers (diagnostic handler, memory allocator, filing system)
to appropriate platform defaults.

Initialises filing system (See Filing System Support, page 58)
Initialises registry (See Pre-Rendering Pre-Processing, page 29)
Initialises resource classes (See Resource Management, page 49)

Creates various defaults (models, materials, etc.)
Remarks: Do not call BrBegin (), again without a preceding BrEnd () ;.
See Also: BrEnd(),,

Termination

The BRender library should be closed down when it is no longer required (having first ensured the
application has explicitly released all use of BRender facilities). This typically causes BRender to
release all memory allocated in resource classes. Nevertheless, it may still be restarted using
BrBegin () ,, (though handlers do not necessarily need to be reset).

1 O Copyright © 1996 Argonaut Technologies Limited

Library Initialisation & Termination

BrEnd ()

Description: End BRender, freeing its internal resources and memory.
Declaration: void BrEnd (void)
Preconditions: ~ 'The BRender library has been initialised and has not already been terminated.

Effects: Releases all memory allocated in resource classes. This is effectively all memory
allocated by BRender for its own use and all memory allocated in the various
BRender allocation functions, such as BrModelAllocate () ...

Remarks: Your application should have gracefully released all dependence upon BRender
data and functions before calling BrEnd () ;.

See Also: BrBegin(),

Copyright © 1996 Argonaut Technologies Limited 1 1

Scene Modelling

Scene Modelling
The Actor

Seebr_actor,

Scenes are described in terms of actors’, typically used to place models, lights and cameras. Nothing can
see or be seen in a scene without actors. Of course it is still possible to perform 2D operations, such as
copying a backdrop into a screen pixel map, or plotting text, but BRender’s 3D effects are all obtained
via actors.

The actor is intrinsically, just a means of orienting and positioning something with respect to
something else. Thus a scene is organised around a system of actors. Admittedly, most actors are used
to place models (visible shapes), but they can be used for a variety of other purposes, such as placing
lights and cameras, and defining common frames of reference.

The function BrActorAllocate ()., is one of the many ways of creating an actor.

Hierarchical Relationships
Seebr_actor, {next, prev, children, parent, depth}

A scene is described in terms of a single actor, however, that actor can be augmented by any number
of other actors, which can be similarly augmented in turn. This gives rise to the tree-like, hierarchy
of actors describing a scene. It is often described as though it were a family tree, with terms such as
parent, child, and sibling used.

The br_actor,, has various members defining its hierarchical relationship. The next and prev
members describe a linked list of siblings, parent and children are self-evident and depth is
equivalent to the generation of the actor.

The actor hierarchy is built up using functions such as BrActorAdd () y,. Naturally, there will be some
occasions when the structure must be modified, and functions BrActorRemove (), and
BrActorRelink (), are provided for this purpose.

Positional Relationship
Seebr_actor,{t},br_transform,

Descendants, in additional to their hierarchical relationship, also have an associated positional and
orientational relationship with their parent. An actor’s position and orientation is defined solely with
respect to its parent, rather than being relative to some absolute co-ordinate space. For some, this has
drawbacks, but most applications benefit from the ease with which complex systems of inter-related
models can be positioned. If an absolute frame of reference is required then actors can all be made
children of the ‘universe’ parent.

When rendering BRender applies a general affine transformation, starting at the tree’s root, between
each actor and each one of its children. As the tree is traversed, the transformations are accumulated.
This means that a simple modification to one actor’s transform will affect the position and orientation

* The reason for the term ‘actor’ rather than ‘object’, is due to the possible confusion that might arise if ‘object’
was used, especially in these days of object oriented technology. Try thinking of the scene as a stage or film set,
with ‘actor’ as a natural, umbrella term for each of the individual elements making it up.

1 2 Copyright © 1996 Argonaut Technologies Limited

Scene Modelling

of all its descendants. Note that the root of the hierarchy has no parent, and consequently, its
transform has no meaning.

The transformation matrix that can be used to transform co-ordinates in one actor’s co-ordinate space
into that of another’s, can be obtained by using the function BrActorToActorMatrix34 (),

Functions

Seebr_actor,{type, type _data,model, material, render_style}, br_model,,,
br_material,,

While actors should be thought of as elements in a structure of relative frames of reference, actors can
be set to perform specific functions. Usually this is to be a place holder for a model (scenery or props,
say).

There are three primary types of actors: models, lights and cameras. Models are visible 3D shapes
defined in terms of geometry (vertices and faces) and surface (colour and materials). Lights are
invisible actors that cause lighting effects upon models’ surfaces. Cameras are invisible actors that
define a particular viewpoint and perspective from which to view a scene.

There are various other functions an actor can provide, typically for assisting BRender by reducing
unnecessary rendering.

The smallest hierarchy that will produce an actual rendered scene consists of four actors, namely a
root, a model, a camera and a light source. The root actor is patently at the root of the hierarchy, and
the model, camera and light actors are its children.

The Reference Actor
Seebr_actor,{type}

This actor type specified by the symbol BR_ACTOR_NONE, is typically used to assist the layout and
organisation of a hierarchy. Although every actor defines its own frame of reference (co-ordinate
space), for this actor that is all it does.

In spite of its lack of specialisation it still serves a useful purpose. For instance it may be convenient
to represent a flock of birds with each bird positioned relative to some notional position of the flock,
and then simply move the flock as a whole”. The position of the flock could be defined by a reference
actor, and each bird a child model actor.

In general this type of actor is very useful when direct and independent control is required of each
stage in a complex transform that needs to be applied to a model or system of models. Rather than
recalculate this transform each time, each stage (typically very few) can be represented by a separate
actor. For instance a reference actor could represent a translation and rotation, while the child model
actor could be solely concerned with scaling the model.

Invariably, the root of a hierarchy will be a reference actor.

* Forgiveness being begged from those conducting painstaking research into flocking behaviour.

Copyright © 1996 Argonaut Technologies Limited 1 3

Scene Modelling

The Model Actor

Seebr_actor, {type, type _data,model,material, render_style}, br_model,,,
br_material,,

The model actor is what it’s all about; the linchpin of all 3D rendering — no scene should be without
one.

As stated earlier, models are visible 3D shapes defined in terms of geometry (vertices and faces) and
surface (colour and materials). A model actor is primarily defined by its model member, but also has
the material member to define a default material to be used for parts of the model’s surface that
don’t specify a material. The render_style member can also affect things by rendering the model
in different ways. Some of these ways can be useful for things such as selection highlights or simple,
but rapid rendering, e.g. wireframe style.

A feature of model actors is that they can inherit properties such as model, material and rendering

style from their ancestors. Thus a flock of birds could consist of the same model, but have varying
materials. If the model was changed then all birds would change. Note that the model, material
and render_style members are still effective for purposes of defining inheritable model actor

properties in other actors (even of type BR_ACTOR_NONE).

Create a model actor using BrActorAllocate (BR_ACTOR_MODEL, NULL), then assign a model to
the actor’s model member.

The Model

Seebr_model,,,{vertices, faces}, br_vertex,, br_ face,,;

The model is defined by a list of vertices and faces. Each vertex defines a vector from the model
origin to a corner of a face, typically shared by two or more faces. Each face, representing a part of the
surface of a model over which a material is rendered, is defined in terms of a series of vertices. Thus
a cube can consist of eight vertices and six pairs of co-planar triangular faces, with each face specifying
three vertices.

The model’s geometry can be continuously modified, enabling powerful effects such as deformation
and morphing. Because BRender may optimise a model’s geometry, if you need to make
modifications, you will generally need to retain the vertex and face data as originally specified, there
are flags to control this such as BR_MODF_KEEP_ORIGINAL.

BRender maintains some useful information about models, such as their bounding radii and bounding
boxes (see radius and bounds of br_model,,,).

Create a model using BrModelAllocate () ,,;, ensuring that the model is added to the registry
(BrModelAdd () ,,) before the actor hierarchy is rendered.

The Vertex

Seebr_vertex;,{p}, br_vector3,,

The vertex defines a point within a model’s co-ordinate space that may be referred to by faces. By
changing this point, faces referring to it will also change. The number of vertices in a model can be
specified at the time the model is allocated.

1 4 Copyright © 1996 Argonaut Technologies Limited

Scene Modelling

The Face

Seebr_ face,;{vertices}, br_model,;,, br_vertex;,

The face defines itself in terms of a polygon, typically a triangle, with vertices specified by indices
into the vertices list within the model. The order in which they are specified is important; it
specifies the perimeter of the visible side of a face, going anti-clockwise around it. It doesn’t matter
which vertex is specified first.

The face also defines the way in which its surface should be rendered, by specifying a material.

The number of vertices in a model can be specified at the time the model is allocated.

The Material

Seebr_material,,{flags, ka, kd, ks, colour}, br_colour,,

Materials define exactly how faces should be rendered. This can be anything from a single colour
value to a lit environment map. It all depends upon how realistic the surface is required to be, how
much it should be influenced by lighting conditions, and the complexity of the colouring.

Materials are so called, because it is expected that most models represent physical materials such as
wood, granite, wall-paper, etc. Predictably, the more realistic the material is required to be, the
greater the processing overhead is likely to be. Nearly all the parameters of BRender materials are
concerned with making a compromise between quality and performance. The simplest material is
defined simply in terms of a colour value, and is not subject to any lights in the scene; this gives
cartoon-like materials. Lighting effects can be added by specifying that the material is lit and smooth
shaded; this is suitable for materials such as plastic and painted walls. Textured materials such as
wood and marble, can be represented using texture maps, and can also be affected by lighting.

Naturally, the more processing that can be done beforehand, the less that needs to be performed
during rendering. For this reason BRender provides the ability to specify prelit materials. This
feature can be utilised in situations such as outdoor scenes, where the sun moves relatively slowly and
thus need not be involved in frame by frame lighting calculations. Of course, things frequently
changing orientation in the scene will still need to be lit normally.

Lighting

A model’s material can be affected by lights in a scene. The material’s colours will effectively appear
dimmer or brighter according to how well they are lit. This will depend upon the surface’s orientation
with respect to the viewer and each light in the scene.

BRender uses the Phong lighting model. The following formula shows how the lighting A of a face
depends upon 0, the angle at the face between the light source and the face normal, and ¢, the angle
at the face between the viewer and the reflected light ray.

A=k

p
ambient + cos q)

kdlffmecose +k

specular

The ambient factor is the amount of light assumed to be reflected from other objects and lighting in
general. Zero can produce a material whose illumination is highly dependent upon light sources,
whereas higher values can give ever fluorescent or luminous effects. A typical sunny scene might have
most materials with a significant ambient contribution, whereas a dusk scene might have a much lower
one, and a moonlit one, probably zero.

Copyright © 1996 Argonaut Technologies Limited 1 5

Scene Modelling

The diffuse factor determines how much of the reflected light is made up of the component
dependent upon the angle of the face to the direction of the light illuminating it. The closer the face
comes to being perpendicular to the light source, the more light the face receives, and thus the more
diffuse light that can be reflected. Zero can give a shiny surface, whereas higher values can give
surfaces a more matt appearance.

The specular factor determines how much reflected light is made up of the component dependent

upon the angle between the reflected light source and the direction of viewer (naturally, if the angle
is zero, the component will be at its maximum). The greater the value, the more prominent highlights
will be. There is also the power of the cosine, and the greater this is, the sharper any highlights will be.

Colours
Seebr_colour,,

BRender has an integral type dedicated to the task of completely defining a particular colour. It is
used directly when specifying true colours, which is taken to mean any non-indexed colour (one not
utilising a palette). Colour can either be taken to mean the colour of a screen pixel, the colour of light
a surface reflects, or the colour of a light source within a scene.

The colour structure is currently 32 bits, made up of three (or four if you include an alpha component)
bytes. You can construct a colour using the BR_COLOUR_RGB () macro.

The Shade Table

Seebr_material,,{flags, index_base, index_range, index_table, colour_map},
br_pixelmap,,

For performance reasons (with the added benefit of lower memory requirements) textures, rendering
or both can be performed using colour indices instead of colour values. Each colour index is converted
into a colour value using a colour look up table (CLLUT), often called a palette. When textures are
made up of indices there is no straightforward way of lighting them. The brute force way would be to
look up each texture index in the colour table, apply lighting to it to see what shade it should be, and
then search through the colour table for the index of the colour value most closely matching this shade
(which may not be very close at all). Because there isn’t any processing power to waste, BRender
implements a scheme using a shade table which for a given colour index and proportion of light, will
give a colour index corresponding to the shaded colour of the original index.

Being two dimensional and storing pixel values, the shade table is quite suitably represented in the
form of a pixel map. It has as many columns as there are colour indices and as many rows as there are
distinct shades (from unlit to fully lit).

A shade table is created as a pixel map, commonly of type BR_PMT_INDEX_8, when rendering in 256
colour modes, for indexed textures with 256 columns (2® for textures of type BR_PMT_INDEX_8) and
64 rows. Use BrPixelmapAllocate (BR_PMT_INDEX_8,256,64,NULL),, not forgetting to call
BrTableAdd ()., before it is used in rendering.

Tools are generally available to take the effort out of making shade tables.

The Texture Map

Seebr_material,,{flags, colour_map,map_transform}, br_pixelmap,,,
br_matrix23,,

For textured materials, there is an additional problem of how a model’s surface should be covered.
This is a bit like the reverse of how to lay a map of the world on a flat sheet of paper. Similar, but

1 6 Copyright © 1996 Argonaut Technologies Limited

Scene Modelling

while textures are effectively flat, models are hardly ever spherical (even ellipsoid). When it comes
to wrapping textures around complex models, tools are essential.

When it comes to library facilities, BRender provides a general mapping transform (how the flat texture
should be warped to cover each face) and texture co-ordinates at each vertex (defining the coverage of
the infinitely tiled texture plane by each face). There is also an option as to whether textures should be
perspectively correct or not (a compromise between performance and warping). A feature of texture
maps in BRender is that the texture map transform can be continuously modified, thus providing
animated surfaces for insignificant performance overhead.

A texture can even be produced by from a scene rendering. This can provide effects such as television
screens and rear view mirrors. It can be extended further in combination with the environment map
(a first reflection ray trace) to provide mirrored surface effects. Remember though, that fast rendering
is not only a product of efficient rendering algorithms, but also upon the application programmer’s
skill at reducing its workload. For instance a wall mirror could have the rest of the room’s reflection
precomputed into a texture map to be used as an environment map. If passers-by should also be
reflected, then all that’s required is a rendering of just the passer-by over this map (from the mirror’s
point of view).

A reflective effect is often a good substitute for a reflection. Christmas tree baubles for instance can
be environment mapped without really needing to reflect any movement by anything else.

A texture map is created as a pixel map, usually with dimensions being powers of two. If an index
texture map is used that will be lit, then remember to supply an appropriate shade table as well. To
create a texture map use BrPixelmapAllocate (),, followed by BrMapAdd ()., before it is used
by a rendered material.

The Light Actor

Seebr_actor,{type, type_data},br_light,, br_material,,

While models are the only visible elements of a scene, as in reality they require light in order to be
seen. For this reason light actors may be used to position and orient lights within a scene. Lights are
not visible even if looked at directly. Or course, a brightly prelit model can be made a child of the
light — thus making a fairly realistic spotlight model. Note though, that models are transparent to
lights (without computationally intensive shadow processing, anyway).

If light actors are not used, there are only two ways of making surfaces visible. These are pre-lit
textures and ambient lighting. For prelit textures pre-computed lighting levels at each vertex are
stored in the vertex data structure and the BR_MATF_PRELIT flag specified with the material data
structure. This is fine for relatively stationary models (such as buildings) that are primarily lit by
relatively stationary light sources (such as the sun). Ambient lighting only, is really only appropriate
for models that are moderately and evenly lit from all directions, but where this lighting level can
change, e.g. ceilings in well lit rooms with ‘dimmer’ light controls, or outdoor scenes with ambient
lighting affected by cloud cover or nightfall.

Having all the control of the actor of which they are a part, light actors’ position and orientation can
be fully controlled. This greatly facilitates situations requiring moving lights such as: roving spot
lights, sun-rises and sunsets, headlights moving with the car, etc.

Light actors can be created using BrActorAllocate (BR_ACTOR_LIGHT, NULL),. A light
specification will automatically be allocated and pointed to by the type_data member of the actor.
Of course, an instance of a br_1ight,,, structure can be conventionally created and supplied as the

Copyright © 1996 Argonaut Technologies Limited 1 7

Scene Modelling

second argument instead of NULL. Note that light actors will need to be enabled for their lighting to
affect the scene (see BrLightEnable ()).

The Light Specification
See br_light,,{type, colour}, br_colour,,

Lights come in various forms. The simplest light is a direct light, which has the effect of a light a long
way off, such as the sun or moon, or in some cases a flood-light. It certainly won’t be very good for effects
such as a candle lit scene. That sort of thing is a job for the point light, which can also be used for things
such as light bulbs, fires, street lights, etc. For more precise control of light, the spot light may be used.
That can be used, predictably enough, for such things as spot lights, search lights, torches, head lights,
light-houses (where the beam runs along a cliff face say), etc.

Point and spot lights can also be controlled in terms of how rapidly their light diminishes over
distance (attenuates). This is useful for candles and head-lights, i.e. a candle doesn’t light up much
more than the immediate vicinity, and objects in the path of head lights get brighter as they get
nearer.

The spread of spot lights can also be controlled in terms of an inner fully lit cone and an outer
penumbral cone between which the light tails off. Note that spot lights are really conically limited
point lights, rather than diverging (or converging) from a sized disc. This difference will need to be
appreciated when it comes to implementing cylindrical lights such as lasers and search lights, the laser
is probably better implemented using the BrScenePick3D (), function, locating the face and point
of illumination and then directly modifying the screen pixel (found using
BrActorToScreenMatrix4 ().

Light specifications can be created automatically at the time the light actor is created, or they can be
created conventionally.

The Camera Actor
Seebr_actor,{type, type data},br_camera,,

There is a third ingredient to a scene, given a model to see and light to see it by, and this is an eye to
see it with. Given our familiarity with photography and television, it is more useful to think of this
eye as a camera that relays its image to our computer’s monitor or TV screen. Then we have no
problem with the possibilities of having more than one camera in the scene at the same time. Each
camera defines how a 2D image is produced. Each image is invariably stored on a pixel map of
particular dimensions. These images are then either incorporated into the 3D scene or another 2D
image. Eventually, a 2D image will be produced for display on all or part of the screen.

The camera actor’s position and orientation can like any other actor be continuously positioned and
oriented. This allows things such as a driver’s view round a race track, a bird’s eye view, a fly-on-the-
wall view, and any other view you can think of. Cameras are also useful for creating reflections and
mirror views, TV screens, and crude shadow and lensing effects.

Camera actors can be created using BrActorAllocate (BR_ACTOR_CAMERA, NULL),, A camera
specification will automatically be allocated and pointed to by the type_data member of the actor.
Of course, an instance of a br_camera,,, structure can be conventionally created and supplied as the
second argument instead of NULL.

1 8 Copyright © 1996 Argonaut Technologies Limited

Scene Modelling

The Camera Specification
See br_camera,,{type, field_of_view,aspect}

There are two basic types of camera, the parallel camera and the normal perspective one. The parallel
camera produces an isometric image, i.c. faces are not scaled in the image according their distance
from the viewer. The perspective camera on the other hand, according to its field of view, can range
from ‘almost parallel’ to a fish eye lens effect (180° field of view). Somewhere in between we get a
conventional view. If you wished to consider the screen as a window onto a virtual world, the field of
view would be the angle subtended at the eye by the top and bottom of the screen. Of course, it
depends how far away you are, but it can typically be between 10° and 40°. Given frequent exposure
to the cinema and television screen, most people are quite happy with the larger end of the scale.

Note that the aspect of the camera must be specified to ensure that what is square in a scene remains
square when it is displayed on the screen. Calculating the aspect boils down to simply measuring the
physical width of the output image and dividing it by the physical height. In the process of producing
homogenous screen co-ordinates, which are mapped to the full width and height of the output pixel
map, the original x axis is scaled down by the camera aspect (see BrMatrix4Perspective () ,,). The
formula to compute the aspect is thus:

Screen Width S,
Pixel Map Width P,, Horizontal Resolution H,,, P, S,V,,,

Pixel Map Height P, % Screen Height S, B }Th % S,H,,

Vertical Resolution V.

Aspect =

s

So if you have a screen measuring 8"by 6", which has a horizontal resolution of 320 and vertical
resolution of 240, and you are rendering to an image 120 pixels across by 100 pixels high, then the
aspect is obtained as follows:

120 8x240 _

y 1920
T 100 T 6x320

1.2><T9—26 =

Aspect,, 1.2

You’ll notice that if a screen has square pixels (as in the above example) that the camera aspect simply
needs to be the width of the output image divided by its height. The reason why BRender doesn’t
perform this calculation itself and have the ‘aspect’ as the ratio between the sides of the physical
pixel, is because the image pixel map is assumed to be the same shape as the screen — how many

pixels are on each edge, in BRender’s view, is simply a matter of resolution.

Most camera views need to be in perspective, but there are a few good uses for parallel views other
than for viewing CAD models: projecting sun shadows onto walls, creating height fields in depth
buffers (camera looking down), creating aerial maps, telescopic views, etc. Parallel views can be sized
using the width and height members (not forgetting the influence of aspect).

Remember, the camera does not have to be reserved for the player’s view.

Camera specifications can be created automatically at the time the camera actor is created, or they can
be created conventionally.

Copyright © 1996 Argonaut Technologies Limited 1 9

Scene Modelling

Other Actors

Seebr_actor,{type, type _data}

There are three other functions actors may perform. These are primarily concerned with assisting
BRender in reducing unnecessary processing. The bounds actors are ways of saving BRender from
performing some of its usual ‘on screen’ or ‘off screen’ checks for models. The clip-plane actor is a
way of selecting out model actors that although are in the view volume, are not required in the image.

These other actors are created in a similar fashion to other actors, e.g. using

BrActorAllocate (BR_ACTOR_BOUNDS, NULL),. A bounds or clip-plane specification will
automatically be allocated and pointed to by the type_data member of the actor. Of course, an
instance of the specification structure can be conventionally created and supplied as the second
argument instead of NULL. Note that clip-plane actors will need to be enabled before they affect the
scene (see BrClipPlaneEnable ()).

The Bounds & Bounds Correct Actors
Seebr_actor, {type, type_data},br_bounds,,{}, br_vector3,,

Bounds actors are a way for the application to assist the renderer in removing the necessity for many
on/off screen” checks. Bounds actors only affect rendering in terms of enabling or disabling rendering
of descendant model actors, they are not a visible part of the scene’. It is up to you to calculate the
co-ordinates of the bounding box, BRender does not do this automatically, although you could
possibly exploit the model’s bounding box that it does calculate (upon BrModelUpdate () ,,). As long
as you ensure that the co-ordinates of each model’s bounding box are transformed into the bounds
actor’s co-ordinate space, they can all be accumulated as appropriate.

You should use bounds actors for complex systems of models that have relatively compact
configurations, or systems of models with models that do not need to be drawn if a certain, primary
model is not visible, e.g. selection controls. The difference between BR_ACTOR_BOUNDS and
BR_ACTOR_BOUNDS_CORRECT is that the latter represents a guarantee to the renderer that there is
no surface of a descendant model that projects outside the bounding box. If there is any chance that
a descendant actor’s model may protrude use BR_ACTOR_BOUNDS, as the undefined behaviour
resulting from the use of BR_ACTOR_BOUNDS_CORRECT includes anything, not necessarily just
corruption of the screen, or aborting,.

Note that in the cases where, in spite of using bounding box actors, the renderer neither knows that
a model is entirely off screen nor entirely on screen, that the model’s bounding box is used to
determine whether the model should be rendered (or its call-back called). If the model is partially or
wholly on screen, each face is clipped against the viewing volume and enabled clip plane actors.

The Clip-Plane Actor

Seebr_actor,{type, type_data}, br_vector4,,

Clip-plane actors in single-pass rendering are really only good for rendering simple effects such as
crude cross-sectioning and selective lighting. For an example of selective lighting consider a room
with a single spot-light being the only form of illumination. It is sometimes quicker (with a lot of

On screen is defined as within the viewing volume and in front of all enabled clip planes.
¥ Do not be confused by BR_RSTYLE_BOUNDING_POINTS, etc. The bounding box referred to there is the one

calculated by BRender, referenced within the br_model data structure.

20 Copyright © 1996 Argonaut Technologies Limited

Scene Modelling

objects in the room) to define a conical region with three clip-planes than solely rely on the
attenuation of the spot-light to select-out unlit faces. Thus only objects entering the spot-light
pyramid (and the viewing volume) will be visible and lit by the spot-light.

Clip-planes really come in to their own when used in multi-pass rendering. Shadows (as opposed to
silhouettes) can be implemented by rendering one sectioned part of a scene with a direct light, and
the other unlit (using only the ambient component), e.g. similar to the spot-light example above, a
window frame could be used to define a fully lit pyramid using four clip-planes. The fully lit
rendering has the planes facing inward, the shade rendering has the planes facing outward. Another
lighting effect is a sunset (setting over a flat horizon such as the sea) where the tops of trees, buildings
and hills are fully lit, and one or more lower sections have deeper hued and darker lights. A more
obscure trick would be to use a clip plane to define the surface of a pool and render the pool and its
contents slightly differently, possibly even using a different camera position to produce a refraction-
like effect (though this would require rendering the pool image to an intermediate texture map).

Clip planes are not recommended as a way of pruning large actor hierarchies’. Clip planes are
intended for their clipping effects, not their pruning effects.

A clip plane is defined by a four-vector. This is made up of a three-vector, being the unit normal to
the plane, and the offset of the plane from the origin (in the direction of the normal). The equation
of the plane is given as the dot product of this four-vector and the homogenous co-ordinates of a point
on the plane, being equal to zero. Thus:

n,-P,=0

Where n,, is the four-vector defining the plane in terms of a unit normal and offset, and P, is a point
on the plane.

Descendants’ faces are clipped against the plane, with the side defined by the normal being ‘in
scene’.

Note that clip-plane actors will need to be enabled before they affect the scene (see
BrClipPlaneEnable (),).

Co-ordinate Spaces

While this manual requires understanding of 3D graphics, so much confusion arises out of the variety
of co-ordinate spaces, that a discussion is worthwhile - even in this document. BRender itself, only
really ever deals with three co-ordinate spaces, those of the model, the view, and the projected screen.
Nevertheless, it is often useful for the 3D applications developer to have other co-ordinate spaces in
mind.

During rendering, every model’s co-ordinate space is transformed through accumulation of actor
transforms into the view space, and thence to projected screen space: primitive vertex data, pixel and
depth co-ordinates.

Of particular note to those beginning 3D graphics: BRender has no concept of a world co-ordinate
space (an absolute frame of reference).

* Actor hierarchies should be organised according to visibility so that pruning can be performed directly, rather

than by using a clip plane.

Copyright © 1996 Argonaut Technologies Limited 2 1

Scene Modelling

Model co-ordinate space

A geometric model consisting of vertices, and faces between them, has its own local right-handed co-
ordinate system. There is an implicit origin at (0,0,0)". An untransformed model, as seen by an
unrotated camera (translated along its positive z axis so it faces the model), will have its positive axes
pointing as follows: x to the right, y upwards, and the z pointing toward the viewer. A unit of 1 in the
model will remain a unit of 1 in the view space unless any intervening actor transform involves a
scaling.

Actor co-ordinate space

The actor co-ordinate space is shared by its model (if it has one), but is relative to its parent actor’s
co-ordinate space through the use of a transform. The actor transform is defined as the transform
which must be applied to points in the actor’s co-ordinate space (of its model’s vertices, say) for them
to represent the same points in its parent actor’s co-ordinate space.

World co-ordinate space

Whether there is any notion of an absolute frame of reference, or co-ordinate space, is entirely up to
the application. It may be appealing to think of a root actor as defining a world co-ordinate space, but
this is entirely arbitrary, as BRender treats the root actor like any other. The root actor is so called,
because it represents the immediate parent of each actor supplied for rendering (e.g. using
BrZbSceneRenderAdd () ;,), and the ancestor of the camera used for rendering. Its co-ordinate space
is certainly not special. Of course, the root actor’s transform is redundant as the co-ordinate space of
its parent (if it has one) is never used (for a given rendering).

Camera co-ordinate space

The only actor whose co-ordinate space might be regarded as special is that of the camera actor used
for a particular rendering. It is into this actor’s co-ordinate space that every model is transformed’
(during rendering). See br_model_custom_cbfn,;, for details of transformation matrices and
functions that can be used to convert model co-ordinates into view space, or screen space. The use of
the term ‘view space’ is preferred to ‘camera space’.

View space

View space is effectively the camera co-ordinate space, the co-ordinate system in which the view
volume is defined. The view volume is the section of the pyramid* defined by the camera’s field of
view from ~hither_zto -yon_z,and aspectratio, aspect. Itis further defined by the origin of the
output pixel map, origin. Note that the sides of the view volume correspond with the sides of the
pixel map irrespective of its own aspect, therefore the camera’s aspect is the only means of ensuring
a correct aspect ratio is maintained.

* Though br_model has a pivot point which enables translation of the model origin.

¥ Effectively, anyway. Whether a model’s vertices actually exist in this co-ordinate space at any moment is
implementation dependent.

+ Arectangular prism if using a parallel camera.

2 2 Copyright © 1996 Argonaut Technologies Limited

Scene Modelling

Homogenous screen space

An intermediate phase in the transformation between view space and projected screen space is that
of homogenous screen space. This is the viewing volume transformed into a cube, still with a right
handed co-ordinate system, defined between (left, bottom, near) (-1,-1,+1) and (+1,+1,-1).

Projected screen space

Projected screen space is the homogenous screen space transformed into co-ordinates suitable for
rendering to the screen. That is, the x and y limits will correspond to the bounds of the pixel map,
and the z limits will be mapped to the range [-32,768,+~32,767.9]. There are various functions dealing
with such values, e.g. BrZbScreenZToDepth (), BrOriginToScreenXYZO () ,s.

The projected screen space is still a right handed co-ordinate space, but the positive axes now point
as follows: x right, y down, and z away from the viewer.

When ‘screen space’ is referred to, i.e. without any qualifier, it should be assumed that ‘projected
screen space’ is intended.

Physical screen space

There isn’t really a physical screen space, but it can be thought of as the projected screen co-ordinates
converted into values used directly by the rendering engines, i.e. x & y converted to integer pixel map
co-ordinates, and z converted to z buffer depth or z sort depth.

Converting between Co-ordinate Spaces

It is often necessary to convert from 3D space to 2D screen co-ordinates and vice versa. There are
various functions that can assist in this. BrMatrix4Perspective () ,; will produce the matrix
transformation that transforms view space (of a notional camera actor) into homogenous screen space
(assuming a perspective projection). It is often more convenient to have a transform between an
actor’s co-ordinate space and the homogenous screen space, and BrActorToScreenMatrix4 () is
provided for this purpose.

There are more extensive screen oriented functions available for use within custom model rendering
call-backs (see br_model_custom_cbfn,;). These are basically, functions to convert model co-
ordinates into screen co-ordinates (BrPointToScreenXY () .s5), and a function to determine whether
a model is on screen (BrOnScreenCheck () ,5,).

The homogenous screen co-ordinate space is a cuboid defined between (left, bottom, near) (-1,-1,+1)
and (+1,+1,-1). The projected screen co-ordinate space is defined such that the scalar 2D x and y co-
ordinates range across the output pixel map, i.e. between (left top) (-origin_x, -origin_y)and
(width-l-origin_x,height-l-origin_y) and the z ordinate lies in the range (near to far) [-
32,768,+~32,767.9].

There is an inverse relationship between z values in the view co-ordinate space and projected screen
space z values. The conversion from a view z ordinate 2., to the corresponding projected screen z
ordinate Screen, is given by:

Copyright © 1996 Argonaut Technologies Limited 2 3

Scene Modelling

Screen, = -2

15 zzyonzhirher - Zview(zyon + Zhiz‘her)

Zview(zyon - Zhither)

This result is the expansion of applying the transform obtained from BrMatrix4Perspective (),
to a z ordinate, and then multiplying the result by -2".

Note that z buffer and z sort depth values are not necessarily the same as projected screen space, z
ordinates. Functions are available to convert between depths, projected screen space and camera co-

ordinate space.

BrScreenZToCamera ()

Description:

Declaration:

Arguments:

Result:

Convert screen z [-32,768,+~32,767.9] to view z
[-hither_z,-yon_z].

br scalar BrScreenZToCamera (const br actor* camera,
br scalar sz)

const br actor* camera

Pointer to camera actor.

br scalar sz

Screen z value, e.g. as returned by BrOriginToScreenXYZO () ..
br_scalar

Corresponding z value in the camera actor’s co-ordinate space (view space).

BrScreenXYZToCamera ()

Description:

Declaration:

24

Convert point in screen space to point in a camera actor’s co-ordinate space (view
space) (compare with BrPointToScreenXYZO () ,s).

void BrScreenXYZToCamera (br_vector3* point,
const br_actor* camera, const br_pixelmap* screen_buffer,
br_int_16 x, br_int 16 y, br_scalar zs)

Copyright © 1996 Argonaut Technologies Limited

Arguments:

Preconditions:
Effects:

Example:

See Also:

Scene Modelling

br_vector3 * point

A non-NULL pointer to the vector to hold the converted point in camera space.
const br actor * camera

A non-NULL pointer to the camera actor into whose co-ordinate space the point is
to be converted.

const br_pixelmap * screen_buffer

A non-NULL pointer to the screen buffer to which the x & y co-ordinates apply.
br int 16 x

X co-ordinate of pixel.

br_int_16 y

Y co-ordinate of pixel.

br scalar zs

Screen z co-ordinate.

Between BrBegin () ,, & BrEnd () .. Between BrZbBegin () ,; & BrZbEnd ().
Computes the x & y co-ordinates in screen space, and together with the z co-

ordinate applies the inverse projection transform, and stores the resulting vector at
point.

br_vector3 p;

br_uint_32 depth;

br_scalar sz;

depth=BrPixelmapGet (&my_depth_buffer,x,y);
sz=BrZbDepthToScreenZ (depth, &my_camera) ;
BrScreenXYZToCamera (&p, &my_camera, &my_screen_buffer, x,y, sz);
BrOriginToScreenXYZO () ,;, BrPointToScreenXYZO () .5,
BrMatrixd4Perspective () ;.

Copyright © 1996 Argonaut Technologies Limited 2 5

Scene Rendering

Scene Rendering

The Rendering Engine

Having described a 3D scene in terms of actors (models, lights, cameras, etc.) the next step is to
produce a 2D image’. This is where BRender flexes its muscles and races through the actor hierarchy,
accumulating transforms, computing lighting, and rendering faces. The process is performed in three
phases:

Phase 1
e Traverse the actor hierarchy and produce a stream of models, materials, transforms, and rendering
styles

Phase 2

e Discard back faces

® Produce a stream of lit 2D face elements (typically triangles or quads)
¢ Possibly perform binary space partitioning (for hidden surface removal)

Phase 3

e Possibly perform hidden surface removal (ordering, z-buffering, etc.)
e Render faces to destination image (pixel map)

Each phase produces data for the next phase to work on. It is possible in some implementations for a
phase to commence before the previous phase has ended, possibly even processing in parallel.

Depending upon the platform, BRender will exploit dedicated hardware wherever possible to
perform some of the phases.

In terms of how the process appears when using the BRender API, the following gives a simplified C
skeleton of a possible application.
BrBegin(); /* The BRender library is Initialised */

/* The application is initialised */
BrZbBegin();/* The rendering engine is initialised */
/* Set up a scene in terms of an actor hierarchy */

/* Elements in the scene are pre-processed by being added to the
registry (models, materials, textures, shade tables) */

do/* Main loop */
{do /* Perform rendering of the scene from each camera */

{

/* Start supply of scene details to renderer */

* Itis important to keep in mind that a rendering produces a 2D image on a pixel map — not necessarily the screen.

2 6 Copyright © 1996 Argonaut Technologies Limited

Scene Rendering

BrZbSceneRenderBegin (world, camera, colour_buffer,depth_buffer);

for (...; ...; ...)/* Rendering one or more actor hierarchies */
{
/* Specify each branch of world hierarchy to include in
rendering */

BrZbSceneRenderAdd(...);

/* End supply of scene details to renderer */
BrZbSceneRenderEnd () ;

} while (...);
;;'Update the scene */
} while (...);
BrZbEnd();/* Close down the rendering engine */

BrEnd();/* Terminate the BRender library */

In order for the three rendering phases to take place the application must call BRender API functions
to enable it to traverse an actor hierarchy. A ‘Begin’ function (BrZbSceneRenderBegin (),; in the
example above) let’s BRender know that we’re about to supply it with a selection of actors in a
specific hierarchy, that should be viewed from a certain camera actor within it, and the resulting
image to be placed in a supplied pixel map, with a certain method used to remove hidden surfaces.
Each actor in our selection to be included in the rendering is then supplied by using an ‘Add’ function
(BrZbSceneRenderAdd (), in the example). When all of the selection has been added an ‘End’
function is called (BrZbSceneRenderEnd (), in the example). The output from the renderer is not
defined until the ‘End’ function returns. Therefore you may make no assumptions about the contents
of any output image buffers between the ‘Begin’ and ‘End’ functions, i.e. custom model and render
bounds call-backs should not access the buffers. Furthermore, no assumption should be made
regarding how the actor hierarchy is traversed during rendering, e.g. whether branch by branch or
generation by generation.

Initialising the Renderer

Before rendering anything, the rendering engine must be initialised. This should be performed after
library initialisation and before anything is added to the registry. Given that the registry is for
performing pre-rendering preprocessing, it unsurprisingly needs to know beforehand which
rendering engine is going to be used.

Copyright © 1996 Argonaut Technologies Limited 2 7

Scene Rendering

BrZbBegin ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

See Also:

Initialise the Z-buffer renderer. This is a rendering engine which utilises a depth
buffer (a pixel map matching the colour buffer) containing z values for each pixel,
which can be used to determine whether another pixel at the same position should
be drawn over the existing one.

void BrZbBegin (br_uint_8 colour_type, br_uint_8 depth_type)
br_uint_8 colour_type

Pixel map type of buffer to render into.

br_uint_8 depth_type

Pixel map type of Z-buffer.

Between BrBegin () ,, & BrEnd () ;. The registry is empty. No rendering engine
is currently enabled.

Checks that the specified colour and depth types can be supported, initialises
registry for this renderer.

BrZbEnd () ,, BrZsBegin () 5

BrZsBegin ()

Description:

Declaration:

Arguments:

Initialise the Z-sort renderer. This is a rendering engine which uses a bucket sort
to determine the order in which primitives (faces, lines, points) should be rendered.
void BrZsBegin (br_uint_8 colour_type, void* primitive,

br uint_32 size)

br_uint_8 colour_type

Pixel map type of buffer to render into.

void * primitive

Non-NULL pointer to an allocated block of memory to be used as a heap to hold
rendered” primitives and referenced vertices generated during rendering,

br uint_32 size

Size of primitive heap. To ensure that everything is rendered completely, this
should be large enough for the renderer to store the temporary data structures used
to hold details of each rendered primitive and the transformed vertices indexed by
them. A primitive can be anything from a point to a triangle (possibly a quad). For

the purposes of estimation you should allow 26 bytes for each primitive and 64
bytes for each unique vertex. The number of unique vertices can be calculated

* ie. not back faces

28

Copyright © 1996 Argonaut Technologies Limited

Scene Rendering

from the number of primitives, according to how vertices are shared by models’
faces. At best there will be an average of one vertex per face primitive (a
tetrahedron - four faces, four vertices), at worst there will be an average of three
vertices per face primitive (a scene of independent triangles)”.

Note that clipping is likely to increase the number of vertices.

If you estimate that there is an upper limit of about 1,000 faces (of front facing
surfaces) in a rendering sequence with an average of 2.5 vertices per triangular face
(including increases due to clipping) then the value of this member should be
1,000x(26+2.5%64), i.e. 186,000 bytes, call it 200KB.

Preconditions: ~ Between BrBegin (),, & BrEnd () ,,. The registry is empty. No rendering engine
is currently enabled.

Effects: Checks that the specified colour types can be supported, initialises registry for this

renderer.

Remarks: Ifsize isinsufficiently large, some primitives will be omitted from the rendering.
In border line cases, these are likely to be faces of models toward the end of the
traversal of the actor hierarchy (which may manifest itself as deterioration of models
in a particular lineage).

See Also: BrZsEnd(),, BrZbBegin ()

Pre-Rendering Pre-Processing

There are various optimisations that BRender can perform before rendering takes place. These apply
to models, materials, textures and shade tables. The way that any of these are specified to BRender
before rendering is by adding them to the registry. The registry can be thought of as a container for
holding elements involved in a scene. It can also be used as a simple type of database, with fairly
simple search facilities. The preprocessing takes place on each item as it is added to the registry, e.g.
using BrModelAdd () ,,- Any time an item is modified the preprocessing that BRender needs to be
performed, will have to be redone. This is achieved by explicitly updating changed items using
functions such as BrMaterialUpdate () ,,,. As one would hope, such updating only needs to be
performed just before rendering takes place —rather than after each change. If no actor in a scene uses
a registry item then that item doesn’t need to be updated. Conversely, if a actor uses a model,
material, texture or shade table, that item must be in the registry and if changed must be updated
before the actor is supplied to the renderer (even if indirectly).

If an item is no longer involved in a scene, then it can be removed from the registry using a function
such as BrTableRemove () .

Functions to search the registry for a particular item or to enumerate over all items of a certain type
can be found in the supplementary sections of structures br_model,;,, br_material,, and
br_pixelmap,,,.

* This may be higher if primitives are quads — consult your installation guide.

Copyright © 1996 Argonaut Technologies Limited 2 9

Scene Rendering

Hidden Surface Removal Schemes

There are various schemes for rendering faces such that overlapping or intersecting faces are drawn
correctly, i.e. nearer faces are in front of, and hide, farther faces. Each scheme is a different
compromise between, quality, processing overhead, and memory overhead.

The Z-Buffer

The z buffer, or depth buffer, is a fast, high quality scheme, but uses a considerable amount of
memory (something not likely to be found in abundance on games consoles).

How the depth buffer works is platform dependent, but it generally consists of a memory buffer
corresponding to the display buffer, with a depth value for each pixel. The values it contains typically
represent distances from the front - zero would thus represent the position of the front clip plane.
Each time a face is rendered, the z value of each pixel is converted into a depth value, and only if it
has a nearer (lesser) z value than the one in the depth buffer will it be plotted (the depth value in the
buffer is then updated).

BRender supports 16 and 32 bit Z-Buffers, and a description of how the current implementation
generally works now follows.

The depth buffer contains unsigned values representing distance from the front clip plane. A view z
ordinate of ~hither_z (as specified in the camera) would correspond to a depth of zero. A view z
ordinate of —yon_z corresponds to a depth of Depth,,,,, which is an unsigned value of OxFFFFFFFF
(in 32 bpp depth buffers, but 0OXxFFFF0000 in 16 bpp).

Note that as depth buffer values are treated by the rendering engine as unsigned words, before
rendering the depth buffer should be filled to the maximum depth, i.e. 0OXFFFFFFFF. The following
example call will suffice whatever the word size of the depth buffer:

BrPixelmapFill (view->depth_buffer, OXFFFFFFFF) ;

Thus when reading values from a depth buffer, the value will be in the range [0, Depth,,,], with
unwritten pixels having depth buffer values of whatever was used to Initialise them, e.g.
OxXFFFFFFFF.

The functions BrZbBegin () ,;, BrZbSceneRender () ., ctc. are provided for applications requiring a
Z-Buffer rendering engine.

The following functions are provided to convert between depths, screen and view co-ordinates.

BrZbDepthToScreenZ ()

Description: ~ Convert z buffer depth [0,0xFFFFFFFF] to screen z [-32,768,+~32,767.9].

Declaration: br_scalar BrZbDepthToScreenZ (br_uint_32 depth_z,
const br_camera* camera)

3 O Copyright © 1996 Argonaut Technologies Limited

Scene Rendering

Arguments: br_uint_32 depth_z
A 32 bit value read from the z buffer pixel map.
const br camera* camera

A non-NULL pointer to the camera being used for rendering, i.e. relevant to the
depth values used in the z buffer.

Result: br_scalar
The corresponding screen z value.

See Also: BrScreenZToCamera (),, BrScreenXYZToCamera () ..

BrZbScreenZToDepth ()

Description: ~ Convert screen z [-32,768,+~32,767.9] to z buffer depth [0,0xFFFFFFFF].

Declaration: br_uint_32 BrZbScreenZToDepth (br_scalar sz, const br_camera*
camera)

Arguments: br_scalar sz

A screen z value as obtained from functions such as
BrOriginToScreenXYZO () ,s.

const br_ camera* camera

A non-NULL pointer to the camera being used for rendering, i.e. relevant to the
depth values used in the z buffer.

Result: br_uint_32
A 32 bit depth value suitable for writing to a z buffer pixel map.

See Also: BrScreenZToCamera (),, BrScreenXYZToCamera () .

The Z-Sort

See br_order_table,,{}

The Z-Sort is a very fast, low quality scheme using relatively little memory (particularly for simple
scenes). Before rendering, all primitives (faces or smaller elements, such as lines or points) are sorted
according to the z value of one or more of their vertices. The primitives are then rendered farthest
first.

Clipping of intersecting faces involves a severe performance hit and is only likely to be implemented
on very capable platforms. Checking for cyclic overlaps reduces performance still further.

The particular method BRender uses to sort primitives is to use a bucket sort. This involves the use
of one or more order tables. Each order table divides a stratum (depth range) of the observer’s z-axis
into a number of equal sub-strata (depths). The model geometry of each model actor (using a
particular order table) will be converted into rendering primitives, and each primitive will be added
to the bucket (a linked list) corresponding to the sub-strata appropriate to its z-values. It is called a
bucket sort because the order table may be considered as an ordered row of buckets into which items

Copyright © 1996 Argonaut Technologies Limited 3 1

Scene Rendering

are thrown (in any order) according to their value (one bucket per range of values). Thus the order in
which primitives of the same sub-strata are drawn is undefined.

Each order table effectively defines a separate layer of the rendered image, like an acetate. One
should thus take care if order tables’ depth ranges overlap, to avoid far faces being drawn over near
faces. This is only likely to be a problem for intersecting models in separate order tables. Order tables
are drawn in order of sort_z (typically the nearest end of an order table).

The application is responsible for ensuring model actors are using appropriate order tables. The
rendering process can then traverse the actor hierarchy, processing each model into primitives and
inserting these into the appropriate order tables. Actors can be assigned to order tables specifically,
or by inheritance - there is a default, single bucket order table (spanning the entire view volume)
which will be inherited if no ancestral actor defines one. Each new order table that is encountered
during this process is inserted into an ordered linked list of order tables. When complete, the list of
order tables is traversed, with the primitives rendered from each bucket in turn (from back to front).

Performance is relatively independent of the number of buckets you have, given the use of a radix
sort to determine into which bucket a primitive should be placed. Performance does decrease
however, the more order tables you have. This is due to the overhead, as each new order table is
encountered, required to insert the order table at the correct position in the linked list of order tables.
This is only likely to be significant with a large number of order tables.

It is difficult to give guidelines, as approaches to determining an appropriate set of order tables
depends so much on the type of scene (sometimes, even from frame to frame, as models rotate and
intersect). Approaches can vary from having a single order table with a large number of buckets, to a
single bucket order table for each model.

The functions BrZsBegin () ,, BrZsSceneRender () ,;, ctc. are provided for applications requiring a
Z-Sort rendering engine.

The following functions provide means of converting between z sort depth values (as required by
order tables and supplied to primitive call-back functions). Note that the z sort depths are actually in
a different range from view z values, i.e. depths are in the range [-hither_z,+yon_z] whereas view
z values are in the range [-hither_z,-yon_z] (both ranges near to far).

BrZsDepthToScreenZ ()

Description: Convert z sort depth [~-hither_z,+yon_z] to screen z [-32,768,+~32,767.9].

Declaration: br_scalar BrZsDepthToScreenZ (br_scalar depth_z,
const br_camera* camera)

Arguments: br_scalar depth_z

A depth value read from an order table or obtained from a z sort primitive call-back.

const br camera* camera

A non-NULL pointer to the camera being used for rendering, i.e. relevant to the
depth values used in primitives and order tables.

Result: br_scalar

The corresponding screen z value.

3 2 Copyright © 1996 Argonaut Technologies Limited

Scene Rendering

See Also: BrScreenZToCamera ()., BrScreenXYZToCamera () ,;.

BrZsScreenZToDepth ()

Description: ~ Convert screen z [-32,768,+~32,767.9] to z sort depth [-hither_z,+yon_z].

Declaration: br_scalar BrZsScreenZToDepth (br_scalar sz, const br_camera*
camera)

Arguments: br_scalar sz

A screen z value as obtained from functions such as
BrOriginToScreenXYZO () ,s.

const br camera* camera

A non-NULL pointer to the camera being used for rendering, i.e. relevant to the
depth values used in primitives and order tables.

Result: br_scalar

A depth value suitable for writing to an order table or comparing with values of z
obtained from a z sort primitive call-back.

See Also: BrScreenZToCamera (),, BrScreenXYZToCamera () .

Other Schemes

Other hidden surface removal schemes exist and sometimes are a result of the rendering method
used. These include:

Binary Space Partitioning

Voxels

Ray Tracing

Scan Line Rendering

Rendering Functions

There are two ways of rendering a scene. Either the scene is defined in a single hierarchy and
rendered as a whole, or a scene is defined in terms of a selection of subtrees of a single hierarchy. In
the former case, only one function needs to be called, Br[ZblZs]SceneRender () ,,;;, this effectively
wraps up the three functions required for the latter case, Br[ZblZs]SceneRenderBegin () sss,
Br[2ZblZs]SceneRenderAdd () ,;,, and Br[2blZs]SceneRenderEnd () ;. Note that in both cases,
the camera must be a descendant of the scene root actor, as should all the sub-trees. If an environment
actor is currently specified then it must also be a descendant of the scene root.

Note that there are two key call-back functions that can get called during rendering. These are a
custom model rendering call-back (see br_renderbounds_cbf£n,,;) and a render bounds call-back
(see br_model_custom_cbfn,;). The custom model rendering call-back is specified within the
br_model,, structure defined for a model actor and enables an application to make a model’s
rendering dependent upon information only available at the time it’s processed by the renderer. For
similar reasons, the render bounds call-back is called for every model that affects the output image,

Copyright © 1996 Argonaut Technologies Limited 3 3

Scene Rendering

allowing the application to take note of information only available at the time the model’s are
processed by the renderer. The trivial use of the render bounds call-back is to keep track of modified
rectangles of the output image. The render bounds call-back is specified before rendering
commences, using Br[ZblZs]RenderBoundsCallbackSet () y.

There is also a special call-back, br_primitive_cb£n,; only used in the Z-Sort renderer. This
allows customised insertion of primitives into order tables.

BrZbSceneRender ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Remarks:

See Also:

All-in-one function to render a scene using the Z-Buffer renderer.

void BrZbSceneRender (br actor* world, br actor* camera,
br_ pixelmap* colour_buffer, br pixelmap* depth_buffer)

br_actor * world

A non-NULL pointer to the root actor of a scene.

br_actor * camera

A non-NULL pointer to a camera actor that is a descendant of the root actor.
br_pixelmap * colour_ buffer

A non-NULL pointer to the pixel map to render the scene into, whose type is
colour_type assupplied to BrZbBegin () ;.

br_pixelmap * depth buffer

A non-NULL pointer to the pixel map to be used as a depth buffer whose type is

depth_type assupplied to BrZbBegin () ,. It must have the same width and
height as the colour buffer. See BrPixelmapMatch () 5.

Between BrBegin () ,, & BrEnd () ,,. Between BrZbBegin () ,;, & BrZbEnd () ,,.
Not currently rendering,.

Equivalent to a call of

BrZbSceneRenderBegin (world, camera,colour_buffer,depth_buff
er),; followed by BrZbSceneRenderAdd (world),, and
BrZbSceneRenderEnd () ;.

The colour buffer and depth buffer should not be texture maps (or even shade
tables), though they can of course be subsequently added as such once the
rendering has completed.

BrZbRenderBoundsCallbackSet (), BrZbModelRender () ..

BrZsSceneRender ()

Description:

Declaration:

34

All-in-one function to render a scene using the Z-Sort renderer.

void BrZsSceneRender (br_actor* world, br_ actor* camera,
br_pixelmap* colour_buffer)

Copyright © 1996 Argonaut Technologies Limited

Scene Rendering

Arguments: br_actor * world

A non-NULL pointer to the root actor of a scene.

br actor * camera

A non-NULL pointer to a camera actor that is a descendant of the root actor.
br_pixelmap * colour_buffer

A non-NULL pointer to the pixel map to render the scene into, whose type is
colour_type assupplied to BrZsBegin () .

Preconditions: Between BrBegin () ,, & BrEnd () . Between BrZsBegin () ,; & BrZsEnd(),,.
Not currently rendering.

Effects: Equivalent to a call of
BrZsSceneRenderBegin (world, camera, colour_buffer), followed by
BrZsSceneRenderAdd (world),, and BrZsSceneRenderEnd () ;.

Remarks: The colour buffer should not be a texture map (or even a shade table), though it can
of course be subsequently added as such once the rendering has completed.

See Also: BrZsRenderBoundsCallbackSet (), BrZsModelRender () s,
BrZsPrimitiveCallbackSet () ,.

BrZbSceneRenderBegin ()

Description: ~ Set up a new scene to be rendered using the Z-Buffer renderer, processing the
camera, lights and environment.

Declaration: void BrZbSceneRenderBegin (br_actor* world, br_actor* camera,
br_pixelmap* colour_ buffer, br_ pixelmap* depth_buffer)

Arguments: br_actor * world
A non-NULL pointer to the root actor of a scene.
br actor * camera
A non-NULL pointer to a camera actor that is a descendant of the root actor.
br_pixelmap * colour_buffer

A non-NULL pointer to the pixel map to render the scene into, whose type is
colour_type assupplied to BrZbBegin () .

br_pixelmap * depth_buffer
A non-NULL pointer to the pixel map to be used as a depth buffer whose type is

depth_type as supplied to BrZbBegin () . [t must have the same width and
height as the colour buffer. See BrPixelmapMatch () ;.

Preconditions: Between BrBegin () ,, & BrEnd () ,,. Between BrZbBegin () ,;, & BrZbEnd ().
Not currently rendering.

Effects: Enter rendering state, prepare for destination buffers, preprocess view, screen and
environment transforms, preprocess enabled lights, handle environment actor,
preprocess enabled clip planes.

Copyright © 1996 Argonaut Technologies Limited 3 5

Scene Rendering

Remarks:

See Also:

The colour buffer and depth buffer should not be texture maps (or even shade
tables), though they can of course be subsequently added as such once the
rendering has completed.

BrZbSceneRenderAdd () ;;,, BrZbSceneRenderEnd () j,
BrZbRenderBoundsCallbackSet (), BrZbModelRender () ..

BrZsSceneRenderBegin ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Remarks:

See Also:

Set up a new scene to be rendered using the Z-Sort renderer, processing the
camera, lights and environment.

void BrZsSceneRenderBegin (br_actor* world, br_actor* camera,
br_pixelmap* colour_buffer)

br actor * world

A non-NULL pointer to the root actor of a scene.

br actor * camera

A non-NULL pointer to a camera actor that is a descendant of the root actor.

br_pixelmap * colour_buffer

A non-NULL pointer to the pixel map to render the scene into, whose type is
colour_type assupplied to BrZsBegin () .

Between BrBegin (), & BrEnd () ,,. Between BrZsBegin () ,;, & BrZsEnd(),,.
Not currently rendering,.

Enter rendering state, prepare for destination buffer, preprocess view, screen and
environment transforms, preprocess enabled lights, handle environment actor,
preprocess enabled clip planes.

The colour buffer should not be a texture map (or even a shade table), though it can
of course be subsequently added as such once the rendering has completed.
BrZsSceneRenderAdd () ;;,, BrZsSceneRenderEnd () j,

BrZsRenderBoundsCallbackSet (), BrZsPrimitiveCallbackSet () ,,
BrZsModelRender () ,s,.

BrZbSceneRenderAdd ()

Description:
Declaration:

Arguments:

Preconditions:

36

Include an actor (and its descendants) of the wor 1d in the current rendering.
void BrZbSceneRenderAdd (br_actor* tree)

br_actor * tree

A non-NULL pointer to an actor hierarchy, which must be a descendant of the
world hierarchy supplied to BrZbSceneRenderBegin () ;.

Between BrBegin () ,, & BrEnd () ,,. Between BrZbBegin () ,;, & BrZbEnd ().
Currently rendering, i.c. between BrZbSceneRenderBegin () ;s and
BrZbSceneRenderEnd () ;. Not within a custom model render call-back or render
bounds call-back

Copyright © 1996 Argonaut Technologies Limited

Effects:

Remarks:

See Also:

Scene Rendering

Add actor to list of actors to be rendered.

Whether rendering takes place during this function or sometime before the return
of BrZbSceneRenderEnd (), is undefined. When custom model render and
render bounds call-back functions are called is similarly undefined.

BrZbSceneRenderBegin () ;;, BrZbSceneRenderEnd () 5,
BrZbRenderBoundsCallbackSet () ,, BrZbModelRender () ,;.

BrZsSceneRenderAdd ()

Description:
Declaration:

Arguments:

Preconditions:

Effects:

Remarks:

See Also:

Include an actor (and its descendants) of the wor1d in the current rendering.
void BrZsSceneRenderAdd (br_actor* tree)

br_actor * tree

A non-NULL pointer to an actor hierarchy, which must be a descendant of the
world hierarchy supplied to BrZsSceneRenderBegin () .

Between BrBegin () ,, & BrEnd () ,,. Between BrZsBegin () ,, & BrZsEnd(),,.
Currently rendering, i.e. between BrZsSceneRenderBegin () 5, and
BrZsSceneRenderEnd () ;. Not within a custom model render call-back, render
bounds call-back or primitive call-back.

Add actor to list of actors to be rendered.

Whether rendering takes place during this function or sometime before the return
of BrZsSceneRenderEnd () 5, is undefined. When custom model render, render
bounds and primitive call-back functions are called is similarly undefined.

BrZsSceneRenderBegin () ;, BrZsSceneRenderEnd ()
BrZsRenderBoundsCallbackSet (), BrZsPrimitiveCallbackSet () 4,
BrZsModelRender () ,s,.

BrZbSceneRenderEnd ()

Description:
Declaration:

Preconditions:

Effects:

Remarks:

See Also:

Copyright © 1996 Argonaut Technologies Limited

Complete the specification of actors to be rendered in a scene, and their rendering.
void BrZbSceneRenderEnd (void)

Between BrBegin () ,, & BrEnd () ,,. Between BrZbBegin () ,;, & BrZbEnd ().
Currently rendering, i.e. after BrZbSceneRenderBegin () ;;. Not within a custom
model render call-back or render bounds call-back

By the time this function ends, the scene as specified in terms of world root, camera
and sub-trees, will have been rendered to the output buffers.

Whether rendering takes place during this function or sometime before the return
of BrZbSceneRenderEnd (), is undefined. When custom model render and
render bounds call-back functions are called is similarly undefined.

BrZbSceneRenderBegin () ;;, BrZbSceneRenderAdd () ;,
BrZbRenderBoundsCallbackSet () ,, BrZbModelRender () ,;.

37

Scene Rendering

BrZsSceneRenderEnd ()

Description:
Declaration:

Preconditions:

Effects:

Remarks:

See Also:

Complete the specification of actors to be rendered in a scene, and their rendering.
void BrZsSceneRenderEnd (void)

Between BrBegin () ,, & BrEnd () ,,. Between BrZsBegin () ,; & BrZsEnd(),,.
Currently rendering, i.e. after BrZsSceneRenderBegin () ;. Not within a custom
model render call-back, render bounds call-back, or primitive call-back.

By the time this function ends, the scene as specified in terms of world root, camera
and sub-trees, will have been rendered to the output buffer.

Whether rendering takes place during this function or sometime before the return
of BrZsSceneRenderEnd () ;; is undefined. When custom model render, render
bounds, and primitive call-back functions are called is similarly undefined.

BrZsSceneRenderBegin (), BrZsSceneRenderAdd () ,,
BrZsRenderBoundsCallbackSet (), BrZzsPrimitiveCallbackSet () ,,
BrZsModelRender (),

BrZbRenderBoundsCallbackSet ()

Description:

Declaration:

Arguments:

Preconditions:
Effects:

Result:

Remarks:

See Also:

38

Set the call-back function invoked for each rendered actor. For example, a call-back
can be set up to log those rectangles in the colour buffer that have been written to
(dirty rectangle flagging).

br renderbounds_cbfn*

BrZbRenderBoundsCallbackSet (br renderbounds_cbfn* new cbfn)
br_ renderbounds_cbfn * new_cbfn

A pointer to the new call-back function. Specify the old call-back function when a
function call-back is not required.

Between BrBegin () ,, & BrEnd () ,,. Between BrZbBegin () ,;, & BrZbEnd ().
Not currently rendering.

Defines a function that will be called during rendering for each model that affects
the output buffers.

br_renderbounds_cbfn *
Returns a pointer to the old call-back function.

Exactly when the call-back function gets called is undefined except that it will be
sometime between BrZbSceneRenderBegin () ;s and

BrZbSceneRenderEnd () ;. It is also not necessarily associated with a particular
point in the rendering process.

br_ renderbounds_cbfn;; br model_ custom_cbfn,,.

Copyright © 1996 Argonaut Technologies Limited

Scene Rendering

BrZsRenderBoundsCallbackSet ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Result:

Remarks:

See Also:

Set the call-back function invoked for each rendered actor. For example, a call-back
can be set up to log those rectangles in the colour buffer that have been written to
(dirty rectangle flagging).

br_renderbounds_cbfn*

BrZsRenderBoundsCallbackSet (br_renderbounds_cbfn* new_cbfn)
br_renderbounds_cbfn * new_ cbfn

A pointer to the new call-back function. Specify the old call-back function when a
function call-back is not required.

Between BrBegin (), & BrEnd () ,,. Between BrZsBegin () ,, & BrZsEnd(),,.
Not currently rendering.

Defines a function that will be called during rendering for each model that affects
the output buffer.

br_renderbounds_cbfn *

Returns a pointer to the old call-back function.

The actor order table will be supplied to the call-back function.

Exactly when the call-back function gets called is undefined except that it will be
sometime between BrZsSceneRenderBegin (), and

BrZsSceneRenderEnd () ;. It is also not necessarily associated with a particular
point in the rendering process.

br_renderbounds_cbfn,; br_model_custom_cbfn,,.

BrZsPrimitiveCallbackSet ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Result:

Copyright © 1996 Argonaut Technologies Limited

Set the call-back function invoked for each primitive generated by the Z-Sort
renderer. This call-back can be used to perform customised insertion of primitives
into order tables.

br_primitive_cbfn¥*
BrZsPrimitiveCallbackSet (br_primitive_cbfn* new_cbfn)

br_renderbounds_cbfn * new_cbfn

A pointer to the new call-back function. Specify the old call-back function when a
function call-back is not required. NULL will indicate that the default call-back
function should be used.

Between BrBegin () ,, & BrEnd () ,,. Between BrZsBegin () ,, & BrZsEnd(),,.
Not currently rendering.

Defines a function that will be called during rendering for each front facing
primitive that is to be inserted into the order table.

br_renderbounds_cbfn *

Returns a pointer to the old call-back function.

39

Scene Rendering

Remarks: Exactly when the call-back function gets called is undefined except that it will be
sometime between BrZsSceneRenderBegin (), and
BrZsSceneRenderEnd () ;;. However, it may be assumed that rendering to the
output buffer has not yet commenced.

See Also: br_primitive_cbfn,; br model_custom_cbfn,,.

Terminating the Renderer

Once rendering has completed, all items in the registry should be removed (not necessarily freed) and
the rendering engine closed down. This should also happen before using a different rendering engine
or rendering to a different type of pixel map or image, e.g. rendering to an 8 bit pixel map when the
current rendering is to a 24 bit video buffer.

BrZbEnd ()

Description: ~ Close down the Z-Buffer renderer.
Declaration: void BrZbEnd (void)

Preconditions: ~ Between BrBegin () ,, & BrEnd (). BrZbBegin (), has been called, and
BrZbEnd (), has not yet been called since. The registry is empty. No other
rendering engine is currently enabled.

Effects: Releases resources used by the Z-Buffer renderer.

See Also: BrZbBegin () 5

BrZsEnd ()

Description: ~ Close down the Z-Sort renderer.
Declaration: void BrZsEnd (void)

Preconditions: ~ Between BrBegin () ,, & BrEnd () ,.BrZsBegin (), has been called, and
BrZsEnd (), has not yet been called since. The registry is empty. No other
rendering engine is currently enabled.

Effects: Releases resources used by the Z-Sort renderer.

See Also: BrZsBegin ()

40 Copyright © 1996 Argonaut Technologies Limited

Image Support

Image Support

Pixel Maps

Seebr_pixelmap,,

In BRender, all two dimensional images are described in terms of pixel maps. A pixel map may
represent any device that can be described in terms of width and height, and can support primitive
graphical operations such as plot a point, line or triangle, e.g. video memory, a printer, or an area of
memory. As far as BRender is concerned there is very little difference between them, it’ll quite
happily produce an image on a dot matrix printer as on an accelerated graphics card. Of course, the
performance may be quite different depending on what device the pixel map refers to. On some
platforms there may be graphic acceleration hardware which may only be usable on video memory,
which may be inaccessible to BRender, thus rendering to a screen pixel map may be a few times faster
than rendering to a pixel map based in main memory. Sometimes it’s the other way around.

Using Pixel Maps

In general, you’ll use a pixel map for the following:

The output image

A depth buffer (if you’re using the Z-Buffer renderer)

An off-screen image (if you’re using double buffering)

Any sub-images copied to the output image

Any images to be involved in the scene on the surface of models
Texture maps for models’ surfaces

Shade tables for indexed texture maps

Operations

The operations available on pixel maps include:

e setting points, lines, and rectangles to specific colours
e copying rectangles from one pixel map to another

® writing text

Rendering To Pixel Maps

BrPixelmapDirtyRectangleFill (),, and BrPixelmapDirtyRectangleCopy (). are useful
when using results from within a render bounds call back function (see
br_renderbounds_cbfn,;).

In some cases a scene rendering may only affect a few small areas of the destination pixel map. It can
provide some performance improvement if only these areas are cleared each frame, rather than
clearing the entire pixel map. The procedure is to utilise the br_renderbounds_cb£fn,,; call-back,
setting it before rendering (using BrZbRenderBoundsCallbackSet ()), collect a list (or overall
bounding rectangle) of bounds supplied, and use this to clear the destination pixel map just before
the next rendering. Each rectangle can be cleared or reset using
BrPixelmapDirtyRectangleFill (), or BrPixelmapDirtyRectangleCopy ().. These
functions are used because they can be faster, though they may utilise a larger rectangle than that
specified (for more efficient word aligned operation).

Copyright © 1996 Argonaut Technologies Limited 4 1

Image Support

BrPixelmapDirtyRectangleFill ()

Description:

Declaration:

Arguments:

Effects:

Remarks:

Example:

See Also:

Set an area of a pixel map that covers a specified rectangle to a given value.
"This function is intended to be used in conjunction with a rendering call-back to
reset those regions of a pixel map that have been rendered to.

void BrPixelmapDirtyRectangleFill (br_pixelmap* dst,br_int_ 16
x, br _int_16 y, br_uint_16 w,
br uint_16 h,br uint_32 colour)

br_pixelmap * dst

A pointer to the destination pixel map.
br_int_16 x,y

Co-ordinates of the rectangle’s top left corner.
br uint_16 w,h

Rectangle width and height (in pixels).
br_uint_32 colour

Value to set each pixel to.

Sets an area of pixels in the destination pixel map to a value, such that each pixel
in the specified rectangle is reset.

The actual area affected depends upon the platform and implementation, but this
function is intended to provide the fastest way of resetting a particular rectangle. It
is possible that this could be as large as the entire pixel map. Hopefully, most
redundant, repeated calls would be ignored.

br_uint_32 zfar=0xffffffff;
br_int_16 drx, dry;
br_uint_16 drw, drh;

br_pixelmap* zbuffer;

BrPixelmapDirtyRectangleFill (zbuffer,drx,dry,drw,drh, zfar);
BrZbRenderBoundsCallbackSet (),

BrPixelmapDirtyRectangleCopy ()

Description:

Declaration:

42

Copy a rectangular window of data from one pixel map to the same position in
another pixel map.

"This function is intended to be used in conjunction with a rendering call-back to
copy those regions of a pixel map that have been rendered to.

void BrPixelmapDirtyRectangleCopy (br_pixelmap* dst,const br_
pixelmap* src, br_int 16 x, br_int_ 16 y,br uint_16 w,
br uint_16 h)

Copyright © 1996 Argonaut Technologies Limited

Image Support

Arguments: br_pixelmap * dst
A pointer to the destination pixel map.

const br_pixelmap * src

A pointer to the source pixel map.
br_int_16 x,y
Co-ordinates of the rectangle’s top left corner.
br_uint_16 w,h
Rectangle width and height (in pixels).
Preconditions: ~ The source and destination pixel maps must have the same type and dimensions.
Effects: Copiesan area of pixels from the source to the destination pixel map, such that each
pixel in the specified rectangle is copied.

Remarks: The actual area copied depends upon the platform and implementation, but this
function is intended to provide the fastest way of copying a particular rectangle. It
is possible that this could be as large as the entire pixel map. Hopefully, most
redundant, repeated calls would be ignored.

Example:
br_int_16 drx, dry;
br_uint_16 drw, drh;
br_pixelmap* offscreen;

br_pixelmap* backdrop;

BrPixelmapDirtyRectangleCopy (offscreen,
backdrop,drx,dry,drw,drh) ;

See Also: BrZbRenderBoundsCallbackSet (),

Pixel Maps To Video

There are three ways of rendering to video:

1. Render direct to a pixel map representing a video device

2. Render to a memory based pixel map and copy it to a video pixel map each frame

3. Render to a memory based pixel map and swap it with a video pixel map each frame

All three methods suffer from problems of tearing, the first also from visible image construction. That
is, if modifications to video memory are not postponed until the start of the CRT fly-back.

Fortunately, BRender provides a function BrPixelmapDoubleBuffer (), which should be used to
avoid the possible problems as described above. This will perform, transparently, either of the last
two methods. If the video device supports page swapping then it will utilise that feature, otherwise
it will copy a pixel map to video memory. However, it will automatically do this at the start of the
CRT fly-back, wherever possible.

Copyright © 1996 Argonaut Technologies Limited 4 3

Image Support

BrPixelmapDoubleBuffer ()

Description: If the destination pixel map relates to a device, for example a graphics hardware
screen, then the source ‘off-screen’ pixel map is copied to the destination pixel map
at a suitable moment. If the source is an off screen pixel map (created using
BrPixelmapMatch (..., BR_PMMATCH_OFFSCREEN).,,) then it is swapped with
the destination pixel map instead.

Otherwise, the function is equivalent to BrPixelmapCopy () ;s and the source
pixel map is copied to the destination pixel map.

Declaration: void BrPixelmapDoubleBuffer (br_pixelmap* dst,
br_pixelmap* src)

Arguments: br_pixelmap * dst
A pointer to the destination pixel map.
br_pixelmap * src
A pointer to the source pixel map.
Effects: If the destination is a device that supports a ‘wait for vertical retrace’ function, a

copy or swap will be performed pending that event.

If the destination is a device that supports double buffering and the source pixel
map is an off-screen secondary buffer, the destination and source will be switched
to use each other’s buffers.

Remarks: Returns immediately, but will cause further rendering or calls of this function to
block until the copy or swap has been completed.

Pick Functions

A common function required of a 3D API, by developers working on a 3D user interface, is one that
will return the model at a particular pixel. This is typically used for picking functions, e.g. mouse
selection operations by the user. For this purpose, BRender provides the function
BrScenePick2D (), which will invoke a specified call-back function for each model actor whose
bounds contain the pixel. It is up to the application to determine greater precision, such as which
model, faces or texture co-ordinates appear at the pixel.

There is also a 3D version of the pick function, called BrScenePick3D (). This will perform a
similar operation, but operates on a bounding box rather than a screen pixel. However, if the image
is depth buffered, the depth information for a pixel could be used in conjunction with
BrActorToScreenMatrix4 ()4 to produce a bounding box, more closely corresponding to the pixel
resulting from a model’s face.

4 4 Copyright © 1996 Argonaut Technologies Limited

Maths

Maths

One of the essential aspects of any 3D graphics API is a good set of maths data types and functions.

Fractional representation is almost unavoidable when transforming 3D scenes into 2D co-ordinates,
but there is usually a performance penalty associated when using floating point types, so BRender
also provides a fixed point representation. This is in the form of an alternate library. The same types
are used, so the switch between fixed and floating point is performed at compile time. Naturally there
are range and precision considerations, but at least you have the choice. In fact, on some platforms
with dedicated hardware, the floating point library is faster than the fixed point one.

3D scenes in terms of models, positions and transformations, are conventionally described in terms
of Cartesian co-ordinates, vectors, and matrices. BRender provides data types and structures to cater
for this, and goes even further, providing a dedicated angle type, the Euler Angle Set, for simpler
rotation transforms, and the Unit Quaternion for sophisticated rotational transforms.

C Types

Various BRender data structures and functions still make occasional use of basic C types such as int
and unsigned. However, such use tends to be for simple integer quantities and flags. The floating
point types are rarely used except of course for arguments and results of conversion functions.

Fundamental Types

BRender defines a selection of sized signed and unsigned integer types, for uses where a specific
word size is critical (see br_int_8/16/32,,and br_uint_8/16/32,,).

BRender defines a selection of fixed point types for later use by application oriented types (see
br fixed [1ls][su] [£],.).

Angles

Although a scalar type could suffice for an angle, it tends to end up representing rotations given that
a scalar is not necessarily restricted to a range corresponding to a single rotation. For the purpose of
strictly representing an angle (as opposed to a rotation), the br_angle,; type is provided. By its
nature, this type can only represent angles, readily appreciated given that it is a two byte type, with
65536 corresponding to 360°, i.e. 0°.

Scalars

When it comes to representing numbers in general, particularly co-ordinates, a number is needed that
can take on a wide range of values. A floating point number is ideal, but as not all platforms can deal
with these (quickly or at all), BRender’s general value type is library dependant. Using one library
br_scalar,, compiles to a £ loat, using the other it compiles to a fixed point representation
(br_fixed_ls,;).

Copyright © 1996 Argonaut Technologies Limited 4 5

Maths

Fractions

Where storage is critical and values are always less than unity in magnitude, it makes sense to only
store the fractional components of values. For this reason BRender defines signed and unsigned
fraction types (see br_fraction,, and br_ufraction;,). These are not generally expected to be
used by the application, but may come in handy when large numbers of fraction based data structures
are required.

Vectors
Seebr_vector2;, br_vector3,,, br_vector4,,.

The vector plays a central part in 3D geometry and BRender implements 2, 3 and 4 element vectors
to enable efficient representations. 2D vectors can be implemented either using 2 element vectors
(any homogenous element being implicit), or as 3 element vectors, with an explicit homogenous
element. 3D vectors can be implemented either using 3 element vectors (any homogenous element
being implicit), or as 4 element vectors, with an explicit homogenous element.

Matrices
Seebr_matrix23,,, br_matrix34,, br_matrix4,,.

With 2D texture and 3D geometry transformations being crucial to 3D rendering, BRender
implements various matrix data structures and arithmetic functions. br_matrix23,,is effectively a
2D 3x3 transformation matrix (for use with homogenous 2D co-ordinates) with an implicit third
column. Similarly, br_matrix34,, is effectively a 3D 4x4 transformation matrix (for use with
homogenous 3D co-ordinates) with an implicit fourth column. br_matrix4,, is a fully defined 3D
4x4 transformation matrix (for use with homogenous 3D co-ordinates).

Note that BRender applies a matrix to a vector by pre-multiplying the matrix by the vector.
Furthermore, a matrix A is multiplied by matrix B (written AB) by computing the dot product of
each row of A with each column of B for each element. Further still, ABC is understood to mean
(AB)C (equivalent to A(BC)). Post-Multiply M by A means MA, and Pre-Multiply M by A
means AM.

Euler Angle Sets
Seebr_euler,,,.

The Euler” Angle Set is a set of three angles and an ordering that represents a rotational
transformation about each of the orthogonal axes. It is an easier and simpler way of specifying such
transforms, rather than composing them out of rotational matrices.

Unit Quaternions
See br_quat;,.

The quaternions form an extension to the real numbers that can be used to represent rotations. Just
as we form the complex numbers by starting with the real numbers and including an extra number i

* Pronounced “Oiler” as in “Boiler”.

4 6 Copyright © 1996 Argonaut Technologies Limited

Maths

with the property i’=-1, the quaternions are formed by adding in three extra numbers: 1, j, and k, with

i’=j*=k’=-1. In addition these new numbers obey the following rules:

ij = k = —ji
jk =i = -kj
ki = j = -ik

For example:
(1+i)(2-2k) = 2+2i-2k-2ik = 2+2i+2j-2k

Just as with complex numbers, the modulus of a quaternion is defined by:

. . 2 2 2 2
w+xi+yj+zkl = yw +x +y +z

The quaternions with unit modulus are known as the unit quaternions.
The inverse of a unit quaternion” g=w+xi+yj+zK, is ¢'=w-xi-yj-zK. So we have qq'=¢'q=1.

Rotations may be represented as unit quaternions as follows. Suppose we wish to rotate through an
angle 6 around the axis defined by the unit vector (n,,ny,n,). The corresponding quaternion g is given
by:

q = cos38+ (ni+nj+nk)sing®

The value of quaternions lies in the fact that if we multiply the quaternions for two rotations together
then the resulting quaternion represents the resulting rotation. These operations are considerably
simpler than those needed to represent rotations using matrices.

More explicitly, given a vector (v,,v,,V,), we apply the rotation via the quaternion ¢ representing it
using the following formula:

Vi+v j+vk =q(vi+vj+ vzk)q_1

There is a further property of quaternions requiring a little more discussion. A rotation through 360°
is effectively the same as no rotation. However, if we substitute 0° and 360° into the earlier formula
for ¢ above, we find that these rotations are represented by +1 and -1 respectively. This means that
both +1 and -1 represent the identity transform. This is not a problem though, it simply means that
every rotation can be represented by two different quaternions. If we use the above formula for
applying a quaternion to a vector, then whichever of the two equivalent quaternions we choose, we
will still obtain the same result.

* The inverse of a non-unit quaternion ¢ is (w-xi-yj-sk)/Iql%

Copyright © 1996 Argonaut Technologies Limited 4 7

Resource Management

Resource Management

BRender divides all memory allocation according to a set of classes, called memory classes, or
resource classes. Each memory class is notionally separate and is useful in distinguishing between
different types of memory usage (for allocation policies, debugging, performance analysis, releasing
all memory in a class as a whole). The term resource class is used to indicate an advanced use of the
memory class, in a structured fashion, where resource blocks (special blocks of memory allocated from
the resource class) can be allocated as dependants of another resource block. Similar to C++, this
enables destruction of a resource block to automatically delete all its dependent resource blocks
automatically. This lightens the application programmer’s burden of responsibility. BRender utilises
this feature in a lot of the data structures it allocates —br_actor, is a good example in the way it
may allocate default, type specific data.

Generally, you will not need to explicitly free resource blocks allocated by BRender, even if you
overwrite pointers to them, as a separate record is maintained of their existence and what they are
attached to. This ensures that when something is freed that any resource blocks attached to it are also
freed. The only time attached resources need to be freed sooner is if memory is very limited and there
is a disproportionately high turnover of allocations of a dependant compared to its parent’s lifetime.
In such cases BrResFree ()5, can be used (with caution) to free the dependent immediately, e.g.
destroying unwanted models loaded using BrFmtASCLoad () 5.

For simple applications the simple memory allocation functions can be used (see

BrMemAllocate ()), and where structured allocation is required, resource blocks can be allocated
from the BR_MEMORY_APPLICATION resource class. For more advanced applications requiring
greater control, new resource classes can be created (see br_resource_class;,).

There are other features of resource blocks, including the ability to have a call-back function called
for each resource block of a particular class.

You will find BrResStrDup ()5, quite useful for specifying identifiers of various data structures.

BrResAllocate ()

Description: ~ Allocate a new resource block of a given class.

Declaration: void* BrResAllocate (void* vparent, br_size_t size,
int res_class)

Arguments: void * vparent
A pointer to a parental resource block, or NULL if it will have no parent.
br size t size
Size of block in bytes.
int res_class

Resource class (See Memory Management, page 54).

Result: void *

Returns a pointer to the allocated resource block (of at least size bytes).

4 8 Copyright © 1996 Argonaut Technologies Limited

Resource Management

BrResAdd ()

Description:
Declaration:

Arguments:

Result:

Remarks:

Add a resource block as a dependant or child of another.
void* BrResAdd(void* vparent, void* vres)
void * vparent

A non-NULL pointer to the parent resource block.
void * vres

A non-NULL pointer to the child resource block (will be removed from any current
parent).

void *
Returns a pointer to the child resource block.

Once a resource block has been added as a dependant, it can be freed due to its
parent being freed.

BrResStrDup ()

Description:
Declaration:

Arguments:

Effects:

Result:

Remarks:

Duplicate a string.

char* BrResStrDup (void* vparent, const char* str)
void * vparent

A pointer to a parental resource block (or NULL if independent).
const char * str

A non-NULL pointer to the source string.

Allocates a resource block (from the BR_MEMORY_STRING resource class) and
copies a string into it.

char *

Returns a pointer to the allocated resource block.

"This 1s most useful for specifying identifiers for various BRender data structures.

BrResClass ()

Description:
Declaration:

Arguments:

Result:

Copyright © 1996 Argonaut Technologies Limited

Determine the class of a given resource block.
br_uint_8 BrResClass (void* vres)
void * vres

A non-NULL pointer to a resource block.
br_uint_8

Returns the resource class.

49

Resource Management

BrResSize ()

Description:
Declaration:

Arguments:

Result:

Determine the size of a given resource block.
br uint_32 BrResSize (void* vres)
void * vres

A non-NULL pointer to a resource block.

br uint_32

Returns the size of the resource block in bytes (may not necessarily be the same as
that specified upon allocation, but will not be less).

BrResChildEnum/()

Description:

Declaration:

Arguments:

Effects:

Result:

Remarks:

Example:

50

Enumerate through all dependant resource blocks of a particular resource block.

br uint_32 BrResChildEnum(void* vres,
br_resenum cbfn* callback, void* arg)

void * vres

A non-NULL pointer to a resource block.
br_resenum_cbfn * callback

A non-NULL pointer to a call-back function.

void * arg

An optional argument to pass to the call-back function.

Invoke a call-back function for each child of a resource block. The call-back is
passed a pointer to each child, and its second argument is an optional pointer (arg)
supplied by the user. The call-back itself returns a br_uint_ 32, value. The
enumeration will halt at any stage if the return value is non-zero.

br uint_32

Returns the first non-zero call-back return value, or zero if all children are
enumerated.

"This function does not recurse throughout all descendants. If you require such
behaviour, you’ll need to implement it yourself.

br_uint_32 example_callback(void *vres, void *arg)
{br_uint_32 wvalue;

return (value) ;

{ br_uint_32 ev;
void *rblock;

ev = BrResChildEnum(rblock, &example_callback,NULL) ;

Copyright © 1996 Argonaut Technologies Limited

Resource Management

BrResRemove ()

Description: Remove a resource block from a parent.
Declaration: void* BrResRemove (void* vres)
Arguments: void * vres
A non-NULL pointer to the resource block to be removed.
Result: wvoid *
Returns a pointer to the removed resource block.

Remarks: The resource block will become independent, as though it had been allocated
specifying NULL as its parent.

BrResFree ()

Description: Free a resource block.
Declaration: void BrResFree (void* vres)
Arguments: void * vres

A pointer to a resource block (previously allocated using BrResAllocate (), or
BrResStrDup () 5)-

Effects: Frees the resource block, and any dependent resource blocks it has. If any resource
classes have destructors (see br_resource_class;,;,), they are invoked when
appropriate.

Example:
void BR_CALLBACK example_destructor (void* res, br_uint_8
res_class, br_size_t size)

{

#define EXAMPLE_CLASS (BR_MEMORY_APPLICATION + 1)

static br_resource_class example={“My
Class”,EXAMPLE_CLASS, example_destructor};

{ BrResClassAdd(&example);/* Create resource class */

{ wvoid *ptr;
ptr = BrResAllocate (NULL,1024,EXAMPLE_CLASS) ;

BrResFree (ptr);/* Destructor is invoked */

Copyright © 1996 Argonaut Technologies Limited 5 1

Resource Management

See Also: BrResClassAdd () ;;

5 2 Copyright © 1996 Argonaut Technologies Limited

Memory Management

Memory Management

Dynamic Memory

Simple Memory Services

While C compilers typically provide dynamic memory allocation services via the standard C library,
to assist platform independence, BRender indirects all its requirements via an allocator data structure,
which defines allocation, deallocation, and inquiry functions. By default these will use the standard
C library functions (malloc and free). Note that not all development systems provide any inquiry
functions, so in some cases the corresponding, default BRender function will return zero. Given the
vagaries of what is meant by ‘available memory’, the application programmer is expected to
implement this function themselves if its behaviour is critical.

The following two functions are provided for efficient initialisation and copying of word aligned
memory.

BrBlockFill ()

Description: Fast fill a block of memory.
Declaration: void BrBlockFill (void* dest_ptr, int value, int dwords)
Arguments: void * dest_ptr
A pointer to the block to be filled.
int value
Value to fill the block with.
int dwords
Size of block (number of 32-bit words).
See Also: BrBlockCopy () s,

BrBlockCopy ()

Description: Copy a block of memory. The source and destination blocks must not overlap.

Declaration: void BrBlockCopy (void* dest_ptr, const void* src_ptr,
int dwords)

Copyright © 1996 Argonaut Technologies Limited 5 3

Memory Management

Arguments: void * dest_ptr
Destination pointer.

const void * src_ptr

Source pointer.

int dwords

Size of block to copy (number of 32-bit words).

See Also: BrBlockFill(),,

Memory Classes

For more precise control over its memory usage, BRender distinguishes between its various uses of
dynamic memory. Memory classes also map to resource classes, given that a resource class restricts
itself to a single memory class. So identifier’s of each are the same.

Memory classes are defined by name and number. The following symbols define the number of each

BRender memory class:
BR_MEMORY_SCRATCH
BR_MEMORY_PIXELMAP
BR_MEMORY_PIXELS
BR_MEMORY_VERTICES
BR_MEMORY_FACES
BR_MEMORY_GROUPS
BR_MEMORY_MODEL
BR_MEMORY_MATERIAL
BR_MEMORY_MATERIAL_INDEX
BR_MEMORY_ACTOR

BR_MEMORY_PREPARED_VERTICES

BR_MEMORY_PREPARED_FACES
BR_MEMORY_LIGHT
BR_MEMORY_CAMERA
BR_MEMORY_BOUNDS
BR_MEMORY_CLIP_PLANE
BR_MEMORY_STRING
BR_MEMORY_REGISTRY
BR_MEMORY_TRANSFORM
BR_MEMORY_RESOURCE_CLASS
BR_MEMORY_FILE
BR_MEMORY_ANCHOR
BR_MEMORY_POOL
BR_MEMORY_RENDER_MATERIAL
BR_MEMORY_DATAFILE

The class names are the same bar the BR_MEMORY prefix, thus BR_MEMORY_LIGHT has an identifier

of “LIGHT".

The applications programmer may also indirectly request memory using classes between
BR_MEMORY_APPLICATION and BR_MEMORY_MAX-1 (inclusive). BR_MEMORY_APPLICATION

54

Copyright © 1996 Argonaut Technologies Limited

Memory Management

should be used for general heap requirements (like malloc ()). Classes
BR_MEMORY_APPLICATION+1 and onwards are reserved for user defined classes (see
br resource_class;, and BrResClassAdd () ;).

Dynamic Memory Services

When allocating memory or making an inquiry, the memory class needs to be specified. For general
purposes use BR_MEMORY_APPLICATION.

BrMemInquire ()

Description:
Declaration:

Arguments:

Result:

Find the amount of memory available of a given type.
br_size_t BrMemInquire (br_uint_8 type)
br_uint_8 type

Memory type.

br size t

Returns memory available in bytes.

BrMemAllocate ()

Description:
Declaration:

Arguments:

Result:

Allocate memory.

void* BrMemAllocate (br_size_t size, br_uint_8 type)
br_size_ t size

Size of memory block to be allocated.

br_uint_8 type

Memory type.

void *

Returns a pointer to the allocated memory, or NULL is unsuccessful.

BrMemCalloc ()

Description:
Declaration:

Arguments:

Allocate and clear memory.

void* BrMemCalloc (int nelems, br_size_t size, br_uint_8 type)
int nelems

Number of elements to allocate.

br_size_ t size

Size of each element.

Copyright © 1996 Argonaut Technologies Limited 5 5

Memory Management

br_uint_8 type
Memory type.
Result: wvoid *

Returns a pointer to the allocated memory, or NULL is unsuccessful.

BrMemStrDup ()

Description: Duplicate a string.
Declaration: char* BrMemStrDup (const char* str)
Arguments: const char * str
A pointer to the source string.
Result: char *

Returns a pointer to the new copy of the string.

BrMemF'ree ()

Description: Deallocate memory.
Declaration: void BrMemFree (void* block)

Arguments: void * block

A pointer to the block of memory to deallocate.

Memory Allocation Handler

BRender provides the facility for the application to specify their own memory allocation functions,
through which all BRender’s memory allocation is performed. A static br_allocator,, structure,
containing pointers to an allocator, deallocator and inquiry function, is defined and engaged using
BrAllocatorSet () .

The application will typically need to do this for platforms that don’t have the standard C library
functions (malloc () etc.), and in cases where simple memory allocation is not appropriate due to
limited memory space or performance.

Memory Pools

Pools are a flexible way of allocating memory from a class, whereas resource classes permit structured
allocation. See br_pool,, for more information.

5 6 Copyright © 1996 Argonaut Technologies Limited

Filing System Support

Filing System Support

Standard Filing System Services

BRender provides a set of filing system services very similar to those provided in the standard C
library. All filing should be performed using these functions, so that on platforms where there is no
standard C library or where the filing system is based on an unusual media such as cartridge, calls to
load various items will still succeed. In some cases it may be necessary to have some read operations
accessing a CD-ROM and some read/write operations accessing a memory card (not that one expects
to store much in a memory card).

Note that BRender will recognise an environment variable (in some systems) called
BRENDER_PATH, which will be used, if defined, to extend the search for unqualified file names
beyond the current directory.

For background information on the following functions, read any standard C library documentation
that you may have.

BrFileAttributes ()

Description: ~ Determine capabilities of the filing system.
Declaration: br_uint_32 BrFileAttributes (void)

Preconditions: Filing system handler dependent. BRender’s default filing system requires
BRender to have completed initialisation.

Effects: Interrogates filing system.
Result: br_uint_32

The attributes of the filing system; its capabilities as defined by a combination of
the following flag values:

Flag Attribute

BR_FS_ATTR_READABLE Filing system can read files
BR_FS_ATTR_WRITEABLE Filing system can write files
BR_FS_ATTR_HAS_TEXT Filing system can interpret ASCII text files

BR_FS_ATTR_HAS_BINARY | Filing system can support binary files, i.e. maintains integrity of
streams of any combination of bytes (8 bit).

BR_FS_ATTR_HAS_ADVANCE [Filing system can directly skip bytes

BrFileOpenWrite ()

Description: ~ Open a file for writing, over-writing any existing file of the same name.

Copyright © 1996 Argonaut Technologies Limited 5 7

Filing System Support

Declaration:

Arguments:

Preconditions:

Effects:
Result:

Remarks:

void* BrFileOpenWrite (const char* name, int mode)

const char * name

Name to open file as.

int mode

Mode in which to open file (BR_FS_MODE_TEXT or BR_FS_MODE_BINARY). In

the default implementation of the filing system (using the standard C library), this
is effectively turned into a “w” or “wb” write mode parameter to fopen ().

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed initialisation.

Overwrite or create file using specified name and mode.
void *
Return a file handle or NULL if the file could not be opened.

In the default implementation, when a file is opened for writing in text mode, ‘end
of file’ (EOF, Ctrl-Z, 0x1A) characters may have special significance, and ‘line
feed’ (ILF, Ctrl-], 0x0A, ‘\n’) characters may be translated to ‘carriage return, line
feed’ combinations. Consult your Standard C library documentation.

BrFileWrite ()

Description:
Declaration:

Arguments:

Preconditions:
Effects:

Result:

Remarks:

58

Write a block of data to a file.

int BrFileWrite (const void* buf, int size, int n, void* f)
const void * buf

Buffer containing block to be written.

int size

Size of each element in block.

int n

Maximum number of elements to write.

void * £

Valid file handle - as returned by BrFileOpenWrite () s;.

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed Initialisation.

Write up to n elements from buf to the file £.

int

Return the number of complete elements written, which may be less than n if an
error occurs (such as running out of file space).

The data written to the file may be affected by the current ‘write mode’ of the file.

Copyright © 1996 Argonaut Technologies Limited

Filing System Support

BrFilePrintf ()

Description:
Declaration:

Arguments:

Preconditions:

Effects:
Result:

Remarks:
See Also:

Write a formatted string to a file.
int BrFilePrintf (void* £,

void * £

const char* fmt, ...)

Valid file handle - as returned by BrFileOpenWrite () s.

const char * fmt

Format string as supplied to printf ().

Any further necessary parameters as would be required in printf ().

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed initialisation.

Write the string to the file (effectively using vsprintf ()).

int

Returns the number of characters written, or a negative value if an error occurs.
The data written to the file may be affected by the current ‘write mode’ of the file.

Consult your Standard C library documentation.

BrFilePutLine ()

Description:
Declaration:

Arguments:

Preconditions:

Effects:
Remarks:
See Also:

Write a line of text to a file, followed by writing the new-line character (“\n’).
void BrFilePutLine (const char* buf, wvoid* f)

const char * buf

Pointer to zero terminated string containing line of text to be written.
void * £

Valid file handle - as returned by BrFileOpenWrite () .

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed initialisation.

Write the string to the file. Write the new-line character to the file (‘\n’).
The data written to the file may be affected by the current ‘write mode’ of the file.

Consult your Standard C library documentation.

BrFilePutChar ()

Description:

Declaration:

Copyright © 1996 Argonaut Technologies Limited

Write a single character to a file.

void BrFilePutChar (int ¢, wvoid* f£)

59

Filing System Support

Arguments:

Preconditions:

Effects:
Remarks:
See Also:

int c

Character to write.

void * £

Valid file handle - as returned by BrFileOpenWrite () .

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed initialisation.

Write the character to the file.
The data written to the file may be affected by the current ‘write mode’ of the file.

Consult your Standard C library documentation.

BrFileOpenRead ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Result:

See Also:

60

Open a file for read access.

void* BrFileOpenRead (const char* name, br_size_t n_magics,
br mode_test_cbfn* mode_test, int* mode_result)

const char * name

Name of file.

br_size_t n_magics

Number of characters required for mode_test to determine file type (less than
or equal to BR_MAX_FILE_MAGICS).

br_mode_test_cbfn * mode_test

Call-back function that can be used to determine file type given the first
n_magics characters of a file. Will not be used if NULL.

int * mode_result

If this argument is non-NULL, the file type (if it could be determined) will be stored
at the address pointed to.

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed Initialisation.

Searches for a file called name, if no path is specified with the file, looks in the
current directory, if not found tries, in order, the directories listed in
BRENDER_PATH (if defined). Having found the file, use mode_test (if
supplied) to find out if the file is text, binary or unknown. Store the result through
mode_result (if non-NULL). Obtain a handle to the file.

void *
Return a file handle, or NULL if the file could not be opened.

Consult your Standard C library documentation.

Copyright © 1996 Argonaut Technologies Limited

Filing System Support

BrFileRead ()

Description:
Declaration:

Arguments:

Preconditions:

Effects:
Result:

Remarks:

See Also:

Read a block of data from a file.

int BrFileRead(void* buf, int size, int n, void* f)
void * buf

Buffer to receive block.

int size

Size of each element in block.

int n

Maximum number of elements to read.

void * £

Valid file handle - as returned by BrFileOpenRead ().

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed initialisation.

Read up ton elements of size bytes from the file £ and store them in buf.
br_size t

Return the number of complete elements read, which may be less than n if the
end of file is encountered before all the elements could be read.

The data read from the file may be affected by the ‘write mode’ used to write the
file.

Consult your Standard C library documentation.

BrFileGetLine ()

Description:
Declaration:

Arguments:

Preconditions:

Effects:

Read a line of text (excluding terminators) from a file.

int BrFileGetLine (char* buf, br _size t buf len, void* f£f)
char * buf

Buffer to hold text read.

br_size_t buf_ len

Length of buffer (maximum number of characters to store - including “\0").
void * £

Valid file handle - as returned by BrFileOpenRead ().

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed Initialisation.

Read characters into supplied buffer until buf_len-1 characters have been read,
end of line has been read, or end of file has been reached. If the last character read
was ‘\n’ it is removed from the buffer.

Copyright © 1996 Argonaut Technologies Limited 6 1

Filing System Support

Result:

Remarks:

See Also:

int
The number of characters stored in the buffer is returned. If at the end of file upon
entry, zero will be returned.

The data read from the file may be affected by the ‘write mode’ used to write the
file.

Consult your Standard C library documentation.

BrFileGetChar ()

Description:
Declaration:

Arguments:

Preconditions:

Effects:

Result:

Remarks:

See Also:

Read a character from a file.

int BrFileGetChar (void* f)

void * £

Valid file handle - as returned by BrFileOpenRead ().

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed initialisation.

If the file position is at the end of the file, the file enters the end-of-file state,
otherwise a character is read and the file position is advanced.

int
The character read from the file is returned (as though the character had been cast

as (int) (unsigned char)). Ifa character could not be read because the file
position was at the end of the file, BR_EOF is returned.

The data read from the file may be affected by the ‘write mode’ used to write the
file.

Consult your Standard C library documentation.

BrFileAdvance ()

Description:
Declaration:

Arguments:

Preconditions:

Effects:

62

Advance the file pointer a number of bytes through a binary stream.
void BrFileAdvance (long int count, wvoid* f)

long int count

Number of bytes to advance.

void * £

Valid file handle - as returned by BrFileOpenRead (), and
BrFileOpenWrite () .

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed initialisation.

Advance file position by count bytes.

Copyright © 1996 Argonaut Technologies Limited

Remarks:

See Also:

Filing System Support

This function may be affected by the ‘write mode’ used to write the file. If the
‘write mode’ is BR_F'S_MODE_TEXT, the accuracy of the file pointer is not
guaranteed (unless count is zero).

Consult your Standard C library documentation.

BrFileEOF ()

Description:
Declaration:

Arguments:

Preconditions:

Effects:
Result:

Remarks:

See Also:

Test a file pointer for end of file.

int BrFileEof (const wvoid* f£)

const void * £

Valid file handle - as returned by BrFileOpenRead (), and
BrFileOpenWrite () .

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed initialisation.

None.

int

Returns a non-zero value after the first read operation that attempts to read past the
end of the file. It returns 0 if the current position is not end of file.

This function may be affected by the ‘write mode’ used to write the file. If the
‘write mode’ is BR_F'S_MODE_TEXT, the result may indicate end-of-file upon
reaching an EOF character.

Consult your Standard C library documentation.

BrFileClose ()

Description:
Declaration:

Arguments:

Preconditions:

Effects:
See Also:

Close a previously opened file.

void BrFileClose (void* f£f)

void * £

Valid file handle - as returned by BrFileOpenRead (), and
BrFileOpenWrite () .

Filing system handler dependent. BRender’s default filing system requires
BRender to have completed initialisation.

Close file.

Consult your Standard C library documentation.

Special Filing System Services

BRender allows the application to specify how the various export functions should write data to files.
Text mode will write data in ASCII, using text labels and expanding numbers into strings. Text mode

Copyright © 1996 Argonaut Technologies Limited

63

Filing System Support

files are primarily used for debugging but can be useful to allow hand editing of input data. Binary
mode will cause exported data to be written in binary, i.e. a more compact, unreadable form.

BrWriteModeSet ()

Description:

Declaration:

Arguments:

Effects:

Result:

Remarks:

Instruct BRender to output data files in text or binary for subsequent ‘Save’
operations.

int BrWriteModeSet (int mode)
int mode
Write mode. Either BR_FS_MODE_TEXT or BR_FS_MODE_BINARY.

Records the mode with which BRender should subsequently open files for writing
and how data should be written to them. This will affect export functions such as
BrModelSave () .

int
Returns the old write mode.

The purpose of this function is primarily to indicate to BRender how it should
output its data files, whether in compact binary form or in vaguely human readable,
ASCII form.

If the application produces binary and text files then it will specify the write mode
upon opening a file for writing.

When opening a file for read, it is opened in the same mode as it was written.

64

Copyright © 1996 Argonaut Technologies Limited

Diagnostic Support

Diagnostic Support

Very, very, very few programs are perfect. The compiler may generate incorrect code’, there may be
bugs in the standard C libraries, BRender or the application may be faulty, even the user may upset
things through copying the wrong versions of files, say. Certain aspects of the development platform,
operating platform, and user configuration may make certain features unavailable. When it comes
down to it, you have to expect the unexpected. Fortunately, BRender provides some facilities to
assist in dealing with this problem.

The first thing to do is to understand the different situations in which the unexpected can happen

(the umbrella term of ‘Failure’ is used). This is covered in the following ‘Classifying Failure’ section.
What to do when you spot failure is covered by ‘Handling Failure’ and various relevant techniques
are covered in subsequent sections.

Classifying Failure

Build Errors

Build errors are those caught in the build process by the preprocessor, compiler and linker. Syntax,
semantic and symbol definition errors are the sort of errors that come under this description.

BRender does not issue any of these errors.

Logic Errors

These are errors in the logic of the program, when it just doesn’t quite behave in the desired way.
Some errors are caught by the compiler, others are hopefully caught by observation (from programmer
to user testing).

Subtle Errors

These are errors caused by limitations of the program environment, e.g. loss of precision, rounding
errors, numeric overflow, invalid algorithms, invalid data, etc. The best way of catching these is to use
liberal ‘asserts’ throughout the program.

Unexpected Failure

The program can go catastrophically wrong, typically because of memory corruption. Examples of
causes that might lead to such failure include: invalid arguments, incorrect bounds, incorrect casting,
invalid pointers. The only way of catching these is either to double check everything using ‘asserts’
or to use third party tools that can monitor invalid memory access and dynamic memory use.

* Only consider this as the very last resort, when you have explored every possible mode of failure in your own

program.

Copyright © 1996 Argonaut Technologies Limited 6 5

Diagnostic Support

Expected Failure

There are known limitations within most computer environments. Time, resources, features, and
user correctness are all things that are limited and sometimes the limit is reached. If a program is
going to make any effort to avoid crashing it should at least cater for those occasions when failure can
be expected.

BRender provides various reporting facilities for handling failure.

Handling Failure

The situations in which failure can be caught are detailed below. Unexpected failure is sometimes
caught, but usually for a consequential expected failure. Some systems may be able to detect invalid
memory access and in some circumstances, it may be appropriate for the application to handle such
exceptions.

Unexpected Program Failure

Errors that should not happen, i.e. assertion failures, should cause an abort in the debug build of an
application and a fatal error message, but should be ignored in the release. The point about the use
of ‘assert’ is that it states a fact about the state of the program at a particular point. If failure is
expected, an assert should not be used, but another handler used instead. Predictably, if an assert
would fail in the release, but is properly ignored, it is quite likely that the program will proceed to
crash. It is therefore very important to be confident that no assertion can be expected to fail.

Probable, Expected Failure

Those cases where failure is probable and catered for do not warrant any special diagnostic treatment.
Examples include: a user specified file not being found, a missing joystick, an unimplemented
feature, etc. These are all very much expected failures and are either remedied by the user taking
corrective action, or by the program using an alternative. Obviously, the program will need to keep
the user informed, but such a failure is not considered an error.

Minor, Expected Failure

Those cases where failure does not significantly affect the program, but is improbable, and possibly
surprising, can be considered minor failures. A warning should be issued in the debug build. In the
release there will still be some informational evidence of failure, e.g. a greyed-out menu option.

Serious, Expected Failure

An expected failure, but only with a severe remedy available, can be considered a serious failure. An
error message can be issued in the debug build, and an information response to the user in the release.

Catastrophic, Expected Failure

Unexpected failure, or expected failure with no remedy available, can be considered catastrophic
failure. A fatal error message should be issued in the debug build, followed by abort. In the release

66 Copyright © 1996 Argonaut Technologies Limited

Diagnostic Support

build, there should be an informational response. The likely remedy will be exit to the OS/Menu or
restarting the application.

Debug & Release Builds

BRender supports the convention of only defining ‘assert’ macros when the DEBUG preprocessor
symbol is defined. This together with likely differences in compiler options for debugging support,
distinguishes the ‘debug’ build from the ‘release’ build of a BRender application.

For conditional compilation depending upon debug or release builds, always use the defined state of
the DEBUG symbol to determine the current build type.

With DEBUG defined BR_ASSERT () and BR_VERIFY () will abort and report failure if their single
argument evaluates to zero or NULL, without DEBUG defined, BR_ASSERT () is defined as void, and
BR_VERIFY () isdefined to evaluate its argument. The ‘verify’ version is typically used to assert the
value of an expression, that has a required side effect.

The programmer is expected to define ASSERT and VERIFY symbols as equivalent to BR_ASSERT
and BR_VERIFY, rather than use ASSERT and VERIFY directly. This can also be achieved by
explicitly using #include “brassert.h” in each source file in which this is required.

Debugging

For debugging an application it is sometimes useful to write progress messages to stderr so that
when errors are reported there is some contextual information preceding them. Such messages can
also display the values of certain variables. The macro BR_TRACE () is defined for such a purpose,
together with BR_TRACEO () to BR_TRACE6 () which accept printf () style arguments for
formatted output.

Reporting Diagnostics

Warnings, Errors and Fatal Errors are reported using the macros BR_WARNING (), BR_FAILURE (),
and BR_FATAL (). Each takes a single string argument, and this is output to stderr. This should be
considered a diagnostic level reporting facility and should only be used for testing purposes. The
finished application should take a more polished approach and should tailor its response to each type
of failure.

There are also formatted versions of these macros taking multiple arguments. The macro has a single
digit suffix indicating the number of arguments (from 0 to 6) in addition to the format string — the
arguments are the same as for printf ().

Use BR_WARNING () to generate a warning or error message, but continue with the program
afterwards. Use BR_FAILURE () to generate an error message, and not return, but perform a recovery
(exit). Use BR_FATAL () for severe cases where source level information (source file name and line
number) should also be reported.

Errors Reported by BRender

BRender may utilise the diagnostics itself in some circumstances, e.g. a missing file, insufficient
memory, etc.

Copyright © 1996 Argonaut Technologies Limited 6 7

Diagnostic Support

Specifying a Diagnostic Handler

A diagnostic handler may be set using BrDiagHandlerSet () ,,. This may be to report errors more
appropriately, e.g. in a dialog box (in a GUI), or to a remote debugging terminal. Or, it could simply
be to disable the messages.

The error handler lists pointers to functions handling BR_TRACE (), BR_WARNING (),
BR_FAILURE (), and BR_FATAL ().

68 Copyright © 1996 Argonaut Technologies Limited

Miscellaneous

Miscellaneous
Input Device Support

BRender has little support for 3D specific input devices, however, the following function may be
useful in simulating a 3D input device using a 2D input device such as a mouse.

BrMatrix34RollingBall ()

Description:

Declaration:

Arguments:

Effects:

Remarks:

Example:

See Also:

"This function generates a matrix which provides an intuitive way of controlling the
rotation of 3D objects with a mouse or other 2D pointing device. The mouse may
be thought of as controlling a horizontal flat surface resting on top of a fixed sphere.
As the surface is moved in any direction (but not rotated), so the sphere will rotate.

void BrMatrix34RollingBall (br_matrix34* mat, int dx, int dy,
int radius)

br matrix34 * mat

A pointer to the destination matrix.

int dx,dy

The amount the ‘top surface’ has moved in each direction.

int radius
The radius of the imaginary ball.

"This function calculates the tangent vector (dx,dy) to the sphere of radius
radius.in 3D, and uses this to determine the axis of rotation normal to this
tangent at the centre of the sphere, and the angle subtended by the tangent vector.
From this, a transform matrix is created, describing the rotation.

The function is expected to be used with frequent samples of movements made
with the 2D manipulator, i.e. a movement of 10cm in one go will produce a smaller
rotation (no greater than 180°) whereas the same movement sampled at 100
intervals will cumulatively produce a larger rotation (possibly several revolutions).
"This is unlikely to be a problem in practice.

Note that using the 2D manipulator to describe small circles can rotate the 3D
object about its vertical axis.

int mouse_x,mouse_y;

br_matrix34 mat;

BrMatrix34RollingBall (&mat, -mouse_x,mouse_y, 500) ;

The book Graphics Gems III, edited by David Kirk, ISBN 0-12-409670-0, Ch.2,
Pt.3, “The Rolling Ball’, Andrew]. Hanson, p51.

Copyright © 1996 Argonaut Technologies Limited 69

Platform Specific Support

Platform Specific Support
All Platforms

Note that the installation guide will have more detailed documentation for each platform.

Diagnostic Support

See br_diaghandler,;, for details of providing a platform specific, diagnostic handler.

Dynamic Memory Support

See br_allocator,, for details of providing a platform specific, memory allocation handler.

Filing System Support

See br_filesystem,, for details of providing a platform specific, filing system handler.

Machine Word Ordering

The network order of an n byte word is defined as each byte sorted in order of significance, with the
most significant byte at offset 0, and thus the least significant byte at offset n-1. The host order of a
word is undefined and varies across platforms. No assumptions should be made about host ordering,
and any time anything is done which is order dependent, the word must be first converted to network
order. BRender defines the following macros to convert between host and network ordering,.

BrNtoHF (n) Convertsa float argument from network order to host order
BrNtoHL (n) Converts a Long argument from network order to host order
BrNtoHS (n) Converts a short argument from network order to host order
BrHtoNF (n) Convertsa float argument from host order to network order
BrHtoNL (n) Converts a Long argument from host order to network order

BrHtoNS (n) Converts a short argument from host order to network order

Games consoles

Sony PSX/Sega Saturn

No documentation is available at the time of writing, except that these platforms are supported.

70 Copyright © 1996 Argonaut Technologies Limited

Platform Specific Support

DOS

MS DOS/PC DOS/DR DOS

BRender is supported on this platform in conjunction with a 32 bit DOS extender (refer to the DOS
installation guide). There is a DOS support API (described in the DOS platform installation guide)
covering the following areas:

Setting graphics modes and obtaining a video buffer

Setting the video palette

Obtaining mouse input

Reading the system clock

Keyboard handling

Divide overflow exception handling

Keyboard and Mouse event handling

Specific Graphics Hardware

No documentation on support for specific graphics hardware was available at the time of writing,
except that VESA and VGA compliant graphics cards are supported.

Windows (16 bit)

Windows 3.1 & 3.11 (Win32s API)
Note that BRender is only able to operate effectively on these platforms by using the Win32s APIL.

BRender is able to render to a device independent pixel map. Displaying the pixel map requires use
of a Windows or WinG API function such as BitBlt, StretchDIBits, WinGBitBlt, WinGStretchBlt, etc.

Specific Graphics Hardware

No documentation on support for specific graphics hardware was available at the time of writing.

Windows (32 bit)

Windows 95 & NT (Win32 API)

BRender is able to render to a device independent pixel map. Displaying the pixel map requires use
of a Windows or WinG API function such as BitBlt, StretcchDIBits, WinGBitBlt, WinGStretchBlt, etc.

Direct Drazw, Direct 3D

No documentation is available at the time of writing, except that BRender will exploit these APIs.

Copyright © 1996 Argonaut Technologies Limited 7 1

Platform Specific Support

Intel/Alpha/MIPS/PowerPC

No documentation concerning any differences in BRender API or operation across these MPUs is
available at the time of writing.

Specific Graphics Hardware

No documentation on support for specific graphics hardware was available at the time of writing.

Macintosh

68k, Power Mac

No platform specific documentation is available at the time of writing except that this platform is
supported.

Other

Other platforms may be supported, but no documentation is available at the time of writing.

* 68020 or better

7 2 Copyright © 1996 Argonaut Technologies Limited

Copyright © 1996 Argonaut Technologies Limited

Platform Specific Support

73

Platform Specific Support

7 4 Copyright © 1996 Argonaut Technologies Limited

Data

Structures 4
(Alphabetical

Reterence)

br_actor

br actor

The Structure

The basic unit of scene construction. The br_actor,, object is designed to facilitate hierarchical
relationships between elements of a scene, particularly in terms of position and orientation.

See The Actor, page 12, in the structured description for further details.

The typedef

(See actor. h for precise declaration and ordering)

Hierarchical relationships

br_actor * parent Parent of this Actor

br_actor * next Next sibling of this Actor

br_actor ** prev Previous sibling of this Actor

br_actor * children Children of this Actor

br_uint_16 depth Depth of this Actor from root of hierarchy

Positional relationship

br_ transform t Transform to convert to parent co-ordinates

Actor function

br_ uint_8 type Actor type

void * type_data Extra, type specific data for this Actor
br_model * model Model data for model Actors
br_material * material Material data for model Actors
br_uint_8 render_style Rendering style for model Actors
Supplementary

char * identifier String to identify actor

void * user User data (application dependent)
Related Functions

Scene Rendering

See BrZbSceneRenderBegin () ;,, BrZbSceneRenderAdd () ,, BrZbSceneRender () 5,
Br([zblZs]ModelRender () y;ps,

7 6 Copyright © 1996 Argonaut Technologies Limited

br_actor

Members

Hierarchical Relationships

-- 7 NuLL : s
T Sibling Actors
L -~ "% NULL . .
bk Linked List
-_children
o\ Arrangement
(root actor)
e |\ [T\ (g}
prev		prev		prev
children		children		children
parent		parent		parent
(child actor) (child actor) (child actor)

At head of list when parent —> children == ‘this’
At end of list when next==NULL

Diagram showing linked list of sibling actors for three children of a root.

br_actor * parent

A pointer to the actor’s parent actor in an actor hierarchy. If the actor has no parent, i.e. is the root
actor of its hierarchy, parent is NULL.

br_actor * next

A pointer to the next sibling actor in the linked list of sibling actors (parent’s children). If the actor
has no siblings or is the last sibling actor, next is NULL.

br_actor ** prev

A pointer to the previous sibling actor’s next member in the linked list of sibling actors (parent’s
children). If the first sibling, prev will point to its parent actor’s children member. If the root actor,
prev is NULL. Given that the next member is the first member of br_actor,, prev can be cast to
a pointer to the previous actor (where prev points to a next member).

br _actor * children

A pointer to the first actor in a linked list of child actors. If the actor has no children, children is
NULL.

Copyright © 1996 Argonaut Technologies Limited 7 7

br_actor

br_uint_16 depth

The depth of the actor from the root of the hierarchy. depth is zero for the root actor and increases
by one each generation (indirection through children).

Common Features of next, prev, children, depth

These members are maintained by BRender, and only ever changed during hierarchy construction
(See BrActorAdd (), BrActorRemove (), BrActorRelink ()). Although they should never be
directly modified, direct use for traversal purposes is permitted.

Positional Relationship

br_ transform t

This defines the transform to apply to co-ordinates of this actor (e.g. of models), to convert them to
co-ordinates in its parent’s co-ordinate system. This is the primary way of defining relative model
positions and orientations. Any valid transform may be used.

This member is read when rendering and computing actor/actor transforms. It can be modified atany
time, although it should be appreciated that this may have unpredictable effects if done during render
call-back functions.

See BrActorToActorMatrix34 (), for information on obtaining transforms between actors other
than parent and child.

Example

Remember that each actor can be considered to have its own (right handed) co-ordinate system.
Consider a point (1,2,3), of a model vertex say. Let’s suppose the actor has a transform that just
translates by a vector of (1,0,0). In applying this transform we obtain the point (2,2,3), and these are
now co-ordinates in the parent’s co-ordinate’s system. Now let’s suppose the actor has a transform
that also rotates by 90° about the x-axis (+y topples toward us, +z) and is then followed by the
translation of (1,0,0). If we applied this transform we’d obtain the point (2,-3,2).

If you wished to perform this using BRender functions, you might first use
BrTransformToMatrix34 ()., and then BrMatrix34ApplyP () .

Actor Function
br_uint_8 type

This member defines the type of function required of this actor. The actor’s type should contain a
value defined by one of the symbols described in the following table.

7 8 Copyright © 1996 Argonaut Technologies Limited

br_actor

Actor Type Symbol Behaviour

BR_ACTOR_NONE Reference actor — no special behaviour. May be used to define frames of reference,
actor groups, intermediate transforms, inheritable properties, and temporarily disable
an alternative behaviour.

BR_ACTOR_MODEL Renderable model — render the specified model in the specified style, possibly using
the default material

BR_ACTOR_LIGHT Light source — affects rendering of models using materials that are lit.

BR_ACTOR_CAMERA Camera — used to define view point and perspective for rendering output image.

BR_ACTOR_BOUNDS A cuboid bounding box, application defined within the actor’s co-ordinate space.

Box completely off screen: rendering of all descendants is disabled
Box partially on/off screen: descendants subject to ‘on screen’ check
Box completely on screen: descendants subject to ‘on screen’ check

BR_ACTOR_BOUNDS_CORRECT | A cuboid bounding box, application defined within the actor’s co-ordinate space.
Box completely off screen: rendering of all descendants is disabled

Box partially on/off screen: descendants subject to ‘on screen’ check

Box completely on screen: descendants not subject to ‘on screen’ check®

BR_ACTOR_CLIP_PLANE The four vector pointed to by type_data defines a three vector unit normal to a
plane whose distance from the origin is represented by the fourth element.
Descendants are clipped against the plane, with the side defined by the normal being
‘in scene’.

a. Rendering of a model that is off screen is undefined, and should be considered a fatal error

Although set at initialisation, this member can be changed outside rendering at any time (as long as
the other members are set appropriately, and, if a Light or Clip Plane, it has first been disabled (See
BrLightDisable () and BrClipPlaneDisable (),)). During rendering (within call-back
functions) change is not recommended — Actors should not be changed to or from Lights or Clip
Planes, and the particular Camera supplied for the rendering should not have its type changed.

void * type_data

This member is used to refer to additional, type specific data. It should point to data according to the
contents of type as shown in the following table:

Actor type Contents of type_data
BR_ACTOR_NONE NULL (or application defined)
BR_ACTOR_MODEL NULL (or application defined)
BR_ACTOR_LIGHT Pointer to an instance of br__1ight ,,
BR_ACTOR_CAMERA Pointer to an instance of br__camera,,,
BR_ACTOR_BOUNDS Pointer to an instance of br_bounds
BR_ACTOR_BOUNDS_CORRECT |Pointer to an instance of br_bounds
BR_ACTOR_CLIP_PLANE Pointer to an instance of br_vector4,,

The type_data member should not be NULL except for BR_ACTOR_NONE or BR_ACTOR_MODEL.

This member can be changed at any time, though not recommended during rendering.

Copyright © 1996 Argonaut Technologies Limited 7 9

br_actor

Experienced C programmers will be familiar with the technique of supplying pointers to structures
that are actually embodied within others, for the purpose of accessing attached application specific
data”. This technique is still a workable way of extending the amount of data within BRender data
structures, particularly here’. For example, it may be desired to introduce rotating lights. The
corresponding details could be appended to the br_1ight,,, structure as demonstrated in this
example:

typedef struct /* My light, which can be used instead of
br_light */

{ br_light light; /* The standard BRender light specification */
unsigned type; /* My extended light type */
br_scalar speed; /* Various properties */
br_vector3 axis;

} my_light;

br model * model

The model defines the geometry and any specific face characteristics to be rendered in this actor’s
co-ordinate space.

This member points to model information, which is used by this actor if it is a model actor, and
descendent model actors that inherit it. If NULL, model information is obtained (when required by a
model actor) from the previous ancestor (parent) that supplied it. If no ancestor supplies it, a default
br_model,,, data structure is used which defines a cube (this is for diagnostic purposes only).

Note that an actor does not have to be a model actor in order for it to define a model to be inherited
by a descendent model actor.

br material * material

The material is used for a model’s faces that don’t specify a material.

This member points to material information, which is used by this actor if it is a model actor, and
descendent model actors that inherit it. [f NULL, material information is obtained (when required by
a model actor) from the previous ancestor (parent) that supplied it. If no ancestor supplies it, a default
br_material,, data structure is used which defines a flat-shaded grey (this is for diagnostic
purposes only). Out of interest, it is currently defined as follows:*

* For C++ programmers, this is embraced by the language —any derived class may be supplied where a base class
is expected.

¥ Though BRender will of course, not be aware of any attached data (so will not save it in BrActorSave (),
say).

¥ Yet subject to change

80 Copyright © 1996 Argonaut Technologies Limited

br_actor

{ "default",
BR_COLOUR_RGB (255,255, 255), /* colour */

255, /* opacity */
BR_UFRACTION(0.10), /* Indexed ka */
BR_UFRACTION(0.70), /* kd */
BR_UFRACTION(0.0), /* ks */
BR_SCALAR(20), /* power */
BR_MATF_LIGHT, /* flags */

{{ BR_VECTOR2(1,0), /* map transform */

BR_VECTOR2 (0, 1),
BR_VECTOR2 (0, 0),

P,
0,63, /* index base/range*/

i

Note that an actor does not have to be a model actor in order for it to define a material to be inherited
by a descendent model actor.

br_uint_8 render_style

This member determines the style of rendering, which is used by this actor if it is a model actor. If
the NULL style (BR_RSTYLE_DEFAULT) is specified, the rendering style is obtained (when required by
a model actor) from the first ancestor (from the root) that defines a non-NULL style. If no ancestor
defines one, the model is rendered as though BR_RSTYLE_FACES had been specified.

This is subtly different from normal inheritance, in that non-default styles set by intervening actors
have no effect. It is designed this way to facilitate the use of an attribute primarily intended for
highlighting (obviously not one concerned with realism).

The render_style member should be set to a value defined by one of the following (enum)
symbols:

Rendering Style Symbol Rendering Effect

BR_RSTYLE_DEFAULT Uses first non-default rendering style defined in this branch of the hierarchy
(renders faces if no non-default style defined).

BR_RSTYLE_NONE Does not render this actor or any of its descendants.

BR_RSTYLE_POINTS Renders only the points at each vertex of a face using the model’s material.

BR_RSTYLE_EDGES Renders only the points along each edge of a face using the model’s material.(see

br_ face,,; flags)

BR_RSTYLE_FACES Renders all the points across rendered faces using the model’s material.

BR_RSTYLE_BOUNDING_POINTS | Renders only the points at each vertex of the model’s bounding box using the
actor’s material

BR_RSTYLE_BOUNDING_EDGES Renders only the points at along edge of the model’s bounding box using the
actor’s material

BR_RSTYLE_BOUNDING_FACES Renders the faces of the model’s bounding box using the actor’s material

Copyright © 1996 Argonaut Technologies Limited 8 1

br_actor

Supplementary

char * identifier

Pointer to unique, zero terminated, character string (or NULL if not required). Can be used as a handle
to retrieve a pointer to the actor, given only an ancestral actor. Not intended for intensive use.
Typically used to collect pointers to actors loaded using BrActorLoad (), and

BrActorLoadMany () 4. Also ideal for diagnostic purposes.

A non-unique string can be supplied, but which of a set of actors having the same string will be
matched by search functions (See BrActorSearch (),,), is undefined. Also in consideration of
searching, it is not recommended that non-alphabetic characters are used, especially Slash

‘), Asterisk (‘*’), and Query (‘?’), which are used for pattern matching.

This member can be modified by the programmer at any time.

Ifidentifierisset by BrActorLoad (), or BrActorLoadMany (), it will have been constructed
using BrResStrDup () ,.

void* user

This member may be used by the application for its own purposes. It is initialised to NULL upon
allocation, and not accessed by BRender thereafter.

Operations

Hierarchical Relationships

BrActorAdd()

Description: ~ Add an actor hierarchy as a child of a given parent.
Declaration: br_actor* BrActorAdd(br_actor* parent, br_actor* a)
Arguments: br_actor * parent

A non-NULL pointer to the parental actor.

br_actor * a

A non-NULL pointer to its new child.

Preconditions: Between BrBegin () ,, & BrEnd () ,,. New child must be root of its hierarchy, i.e.
must not still be child of another parent.

Effects: Parent’s children member may be modified. Added hierarchy will be linked
into linked list of parent’s children. Members next and prev of some of parent’s
children and of added hierarchy will be modified. The parent member of the
added hierarchy will be modified. All depth members of added hierarchy will be
updated.

8 2 Copyright © 1996 Argonaut Technologies Limited

Result:

Remarks:

See Also:

br_actor

br actor *

The new child pointer a is returned as supplied (for convenience).

Do not attempt to add an actor at more than one place in a hierarchy at a time —
BRender currently only supports simple hierarchical actor structures, not directed
acyclic (or cyclic) graph structures. Note that in spite of this restriction, models on
the other hand, may be simultaneously referred to by any number of actors.

BrActorRemove (), BrActorRelink ()

BrActorRemove ()

Description:
Declaration:

Arguments:

Preconditions:
Effects:

Result:

Remarks:
See Also:

Remove an actor hierarchy from its parent.

br_actor* BrActorRemove (br_ actor* a)

br_actor * a

A non-NULL pointer to the hierarchy to remove.

Between BrBegin () ,, & BrEnd () ,,. Actor to remove must be a child.

Parent’s children member may be modified. Removed hierarchy will be
unlinked from linked list of parent’s children. Members next and prev of some
of parent’s children and of removed hierarchy will be modified. The parent
member of the removed hierarchy will be modified. All depth members of
removed hierarchy will be updated.

br actor *

The pointer to the removed hierarchy is returned as supplied (for convenience).
Note that a Light or Clip plane actor must be disabled before it is removed.
BrActorAdd (), BrActorRelink (),

BrActorRelink ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Copyright © 1996 Argonaut Technologies Limited

Move an actor in a hierarchy, but preserve its apparent world transformation by
manipulating its own transformation as necessary.

void BrActorRelink (br_actor* parent, br_actor* a)
br_actor * parent

A non-NULL pointer to the new parent.

br_actor * a

A non-NULL pointer to the actor to move.

Between BrBegin () ,, & BrEnd () ,,. Both supplied actors are in the same
hierarchy.

Equivalent to a call of BrActorRemove (a) g, followed by

BrActorAdd (parent,a), except that the moved actor’s transform is modified
to reproduce the effects of the original transform.

83

br_actor

Remarsk:
See Also:

Note that a light or clip plane actor must be disabled before it is relinked.
BrActorAdd ()., BrActorRemove (),

Positional Relationship

BrActorToActorMatrix34 ()

Description:

Declaration:

Arguments:

Preconditions:
Effects:

Result:

Accumulate the transformations between one actor and another, representing the
result as a matrix.

br uint_8 BrActorToActorMatrix34 (br matrix34* m,
const br_actor* a, const br_actor* b)

br matrix34 * m

A non-NULL pointer to the destination matrix, into which will be placed the
transform.

const br_actor * a

A non-NULL pointer to the actor from whose co-ordinate space co-ordinates are to
be transformed.

const br_actor * b

A non-NULL pointer to the actor into whose co-ordinate space co-ordinates are to
be transformed.

Between BrBegin () ,, & BrEnd () ,,. Both actors must be in the same hierarchy.

Will calculate the transform required to transform co-ordinates in the co-ordinate
space of a, into the co-ordinate space of b.

br uint_8

The type of the accumulated transformation, e.g. BR_TRANSFORM_MATRIX34 (see
br_transform,,).

BrActorToBounds ()

Description:

Declaration:

Arguments:

Preconditions:

84

Compute an actor hierarchy’s bounding box, encompassing the bounding box of all
models (including descendants).

br bounds* BrActorToBounds (br_bounds* b,

br bounds * b

const br_actor* ap)

Non-NULL pointer to resulting bounding box.

const br_actor * ap

Non-NULL pointer to actor whose bounding box is required.

Between BrBegin () ,, & BrEnd () ,,.

Copyright © 1996 Argonaut Technologies Limited

Effects:

Result:

Remarks:

See Also:

br_actor

Obrains smallest bounding box (in this actor’s co-ordinate space) that will contain
any model or descendant model.

br_bounds *

The bounding box result pointer b is returned as supplied (for convenience).
The default model is used in cases where a model actor would inherit from an
ancestor of the supplied actor.

BrBoundsToMatrix34 () ,,, BrScenePick3D (),,, br_bounds,,,
br_model,,,.

BrScenePick3D ()

Description:

Declaration:

Arguments:

Result:

See Also:

Traverse an actor hierarchy and invoke a call-back function for each model actor
whose bounds intersect a given bounds in a given reference actor’s space. If the
call-back returns a non-zero value, traversal halts.

int BrScenePick3D (br_actor* world,
const br actor* reference, const br bounds* bounds,
br_pick3d_cbfn* callback, void* arg)

br_actor * world

A pointer to the root of a world hierarchy.

const br_actor * reference

A pointer to the reference actor.

const br_bounds * bounds

A pointer to a bounds structure.

br_pick3d_cbfn * callback

A pointer to a pick-3D call-back function.

void * arg

An optional argument to pass to the call-back function.

int

If the call-back returns a non-zero value and traversal halts, that value is returned.
Otherwise, zero is returned.

BrScenePick2D ()

BrActorToScreenMatrix4 ()

Description:

Declaration:

Accumulate the transformations between an actor and the screen, representing the
result as a matrix.

void BrActorToScreenMatrix4 (br matrix4* m,
const br_actor* a, const br_actor* camera)

Copyright © 1996 Argonaut Technologies Limited 8 5

br_actor

Arguments:

Remarks:

See Also:

br matrix4 * m

A non-NULL pointer to the destination matrix to receive the transform between
homogenous co-ordinates in the actor’s co-ordinate space into the homogenous
screen space.

const br actor * a

A non-NULL pointer to an actor.
const br actor * camera

A non-NULL pointer to a camera actor.

The function BrMatrix4ApplyP (), is typically used with this function to
convert co-ordinates in an actor’s co-ordinate space into homogenous screen space
(assuming a centred projection). Note though that the resultant 4-vector is a set of
homogenous co-ordinates and thus the x, y and z values will need to be divided by
the w component.

See Homogenous screen space, page 23.

BrMatrix4Perspective () .

BrScenePick2D ()

Description:

Declaration:

Arguments:

86

Result:

Traverse a world hierarchy, picking model actors from the scene by casting a ray
through a given viewport pixel attached to a given camera. A call-back is invoked
for each actor whose bounds intersect the ray. If the call-back returns a non-zero
value, traversal halts.

int BrScenePick2D (br_actor* world, const br actor* camera,
const br_pixelmap* viewport, int pick_x, int pick_y,
br_pick2d_cbfn* callback, void* arg)

br actor * world

A pointer to the root of a world hierarchy.

const br actor * camera

A pointer to a camera actor.

const br_pixelmap * viewport

A pointer to the viewport through which the pick ray passes.

int pick_x, pick_y

Co-ordinates of viewport pixel through which the pick ray passes.
br_pick2d_cbfn * callback

A pointer to a pick-2D call-back function.

void * arg

An optional argument to pass to the call-back function.

int

If the call-back returns a non-zero value and traversal halts, that value is returned.
Otherwise, zero is returned.

Copyright © 1996 Argonaut Technologies Limited

See Also:

br_actor

BrScenePick3D (), BrModelPick2D () ,;s

Actor Function

BrEnvironmentSet ()

Description:

Declaration:

Arguments:

Result:

Remarks:

"This function is relevant to model actors using environment mapping (set in their
materials’ f1ags member by using BR_MATF_ENVIRONMENT_I Or
BR_MATF_ENVIRONMENT_L).

It set a new environment anchor for such model actors. By default, the reflective
effect produced by an environment map on the surface of a model appears to rotate
with the model itself. If this is unsatisfactory, the map can be anchored to an actor.
If the actor is the root of a world hierarchy, then reflection effects will appear more
realistic.

br_actor* BrEnvironmentSet (br_ actor* a)
br_actor * a

A pointer to an actor to which all environment maps should be anchored. If NULL,
environment maps are not anchored, but rotate with models.

br_actor *
Returns a pointer to the old environment anchor.

Environment actors must be part of the rendered scene (a descendant of the
effective root). If rendering a scene to produce a reflection environment map in
another scene, then (unless the reflected scene also involves environment maps)
the function should be called with NULL before the reflected scene is rendered,
and then called with an appropriate anchor actor (that is part of the latter scene, in
which the environment map is used).

BrLightEnable ()

Description:

Declaration:

Arguments:

Enable a light actor’s effect as a light source within the scene. Light actors only
affect the lighting of a scene if they are in the enabled state before rendering.

void BrLightEnable (br_actor* 1)
br actor * 1

A non-NULL pointer to a light actor.

Copyright © 1996 Argonaut Technologies Limited 8 7

br_actor

Remarks:

See Also:

By default, light actors are disabled.

Light actors must be in the disabled state before they are removed from, relinked
within, or added to a hierarchy. They must also be disabled before they are freed
(or a parent is).

For optimum performance, disable all lights known to have insignificant effect
upon the scene. Some platforms are limited in the number simultaneously enabled
lights that they can support.

BrLightDisable ()

BrLightDisable ()

Description:

Declaration:

Arguments:

Remarks:

See Also:

Disable a light actor’s effect as a light source within the scene. Light actors only
affect the lighting of a scene if they are in the enabled state before rendering.

void BrLightDisable (br_actor* 1)

br_actor * 1

A non-NULL pointer to a light actor.

By default, light actors are disabled.

Light actors must be in the disabled state before they are removed from, relinked

within, or added to a hierarchy. They must also be disabled before they are freed
(or a parent is).

For optimum performance, disable all lights known to have insignificant effect
upon the scene. Some platforms are limited in the number of simultaneously
enabled lights that they can support.

BrLightEnable () g

BrClipPlaneEnable ()

Description:

Declaration:

Arguments:

88

Remarks:

Enable a clip plane. Such clip plane actors affect the contents of a scene (as long as
they are enabled before rendering).

void BrClipPlaneEnable (br_actor* cp)
br_actor * cp
A non-NULL pointer to a clip plane actor.

By default, clip planes are disabled.

Clip planes must be in the disabled state before they are removed from, relinked
within, or added to a hierarchy. They must also be disabled before they are freed
(or a parent is).

Copyright © 1996 Argonaut Technologies Limited

br_actor

BrClipPlaneDisable ()

Description: ~ Disable a clip plane.
Declaration: void BrClipPlaneDisable (br_actor* cp)
Arguments: br_actor * cp
A non-NULL pointer to a clip plane actor.
Remarks: By defaul, clip planes are disabled.
Clip planes must be in the disabled state before they are removed from, relinked

within, or added to a hierarchy. They must also be disabled before they are freed
(or a parent is).

Copy/Assign

While it may be sensible to copy some members, it is generally not sensible to copy the actor as a
whole.

Access & Maintenance

Given that the order in which a hierarchy is rendered is not defined, the benefits of modifying
members during rendering are doubtful. The structure of the actor hierarchy should not be modified
during rendering.

An actor may be indirectly accessed by BRender library functions if they are called while the actor is
in a hierarchy that is thus modified or traversed (through rendering or otherwise). Consequently,
particular care must be taken if modifying the actor while such indirect accesses may be taking place
(especially within rendering call-back functions).

The only functions that indirectly modify an actor’s public members are BrActorAdd () g,
BrActorRemove (), BrActorRelink (), and BrActorFree ()., and these only affect some or all
of the parent, next, prev, children and depth members.

If using the Z-Sort renderer it is likely that order tables will be need to be assigned to model actors
on an individual basis. The following two functions are provided to specify and access an actor’s order
table.

No maintenance is required, except to ensure that members are valid. Hierarchical changes
(Additions, Removals) are effected immediately (given that these are only performed by BRender
functions). All ramifications of other changes will be effected each rendering.

See br_model,,, and br_material,, for their maintenance requirements.

BrZsActorOrderTableSet ()

Description: ~ Given a model actor, set the order table into which its primitives will be sorted.

Copyright © 1996 Argonaut Technologies Limited 89

br_actor

Declaration:

Arguments:

Effects:

Result:

Remarks:
See Also:

br order table* BrZsActorOrderTableSet (br_actor* actor,
br order table* order_table)

br actor * actor

A non-NULL pointer to a model actor.

br order table * order_table

A pointer to an order table. NULL if the actor is to inherit an order table (the default
condition).

Assigns the specified order table to the actor, replacing the current one if any. Be
very careful, if assigning an order table to more than one model actor (whether
explicitly or by inheritance). In such cases judicious use of the order table flags,
such as BR_ORDER_TABLE_NEW_BOUNDS, may be required within a custom model
call-back function.

br_order_table *
Returns order_table as supplied (for convenience).
Only useful to model actors involved during rendering by the Z-Sort renderer.

BrZsActorOrderTableGet (),

BrZsActorOrderTableGet ()

Description:

Declaration:

Arguments:

Result:

Remarks:
See Also:

Given a model actor, obtain a pointer to the currently set order table (into which its
primitives will be sorted).

br order table*
BrZsActorOrderTableGet (const br_actor* actor)

const br_ actor * actor
A non-NULL pointer to a model actor.
br order table *

Returns the order table currently assigned to the specified actor. NULL is returned
if no order table is explicitly assigned, i.e. an order table is inherited.

Only useful to model actors involved during rendering by the Z-Sort renderer.

BrZsActorOrderTableSet (),

Referencing & Lifetime

References are maintained to enabled Light or Clip Plane actors even if they are subsequently
detached from a hierarchy that is then rendered. Thus it is important to disable such actors before

removing them.

Actors must be maintained while they are part of an actor hierarchy, especially ones that will be

rendered.

20

Copyright © 1996 Argonaut Technologies Limited

br_actor

If the actor was allocated using BrActorAllocate (), it will be freed by BrEnd () , (if it hadn’t been
freed previously — as it should have been).

Initialisation

The actor is automatically initialised by BrActorAllocate ()., however, if you allocate it yourself,
you should either use calloc(, sizeof (br_actor)) ormemset (,0,sizeof (br_actor)),
and ensure the following is done:

Set parent, next, prev, children to NULL

Set depth to zero

Set t to the identity transform

Set type to any valid actor type

Set model to NULL

Setmaterial to NULL

Set render_style be BR_RSTYLE_DEFAULT

Set type_data to point to a valid data structure according to the type.

Set identifier to NULL

Refer to the respective description of each member for further details.

Construction & Destruction

Actors should be constructed using BrActorAllocate ()., and destroyed using BrActorFree ().
Although actors can be constructed any other way (as long as they observe the access & lifetime
requirements), they should be detached (See BrActorRemove () ;) from a hierarchy before any
ancestor (parent) is freed using BrActorFree ()., This is because BrActorFree (),, will attempt to
release storage for all of an actor’s descendants — whether or not they were allocated by
BrActorAllocate ()., In general, actors should be destroyed strictly using the complementary
method of construction.

Note that BrActorLoad () ,,and BrActorLoadMany () o, will effectively call BrActorAllocate ().,
for each actor they import.

BrActorAllocate()

Description: Allocate a new actor.

Declaration: br_actor* BrActorAllocate (br_uint_8 actor_type,
void* type_data)

Copyright © 1996 Argonaut Technologies Limited 9 1

br_actor

Arguments:

Preconditions:

Effects:

Result:

Remarks:

Example:

See Also:

br_uint_8 actor_type

Defines the t ype member of the actor allocated (See the t ype member of
br_actor, foralist ofacceptable types). Itis also used to determine suitable type
specific data if NULL is supplied for the type_data argument.

void * type_data

A pointer to optional, additional, type specific data used to determine the
type_data member of the actor allocated. (See the type_data member of
br_actor,, to determine the type of data structure that should be referenced).
NULL may be supplied in all cases.

Between BrBegin () ,, & BrEnd () ,,.

Memory can be allocated.

Abr_actor, data structure is allocated and initialised (See br_actor,,
Initialisation). Its t ype member is initialised with the value of actor_type.
Where the actor requires type specific data, and NULL has been supplied, the
type_data member is initialised with a pointer to an appropriate, freshly
allocated data structure containing default values.

br_actor *
A pointer to the new br_actor,, data structure.

If this function allocates type specific data, it is allocated and attached to the actor
using BrResAllocate () 4, so will be freed with the actor even if the actor’s
type_data member is subsequently changed. Until the actor is freed, the data
may be freely accessed.

br_actor * t_pActor=BrActorAllocate (BR_ACTOR_MODEL,NULL) ;

BrActorFree (),

BrActorFree ()

Description:
Declaration:

Arguments:

Preconditions:
Effects:

92

Free an actor and all its descendants (children) if any.
void BrActorFree (br_actor* a)

br actor * a

A pointer to an actor previously allocated using BrActorAllocate (), NULL is
not acceptable. If a Light, or Clip Plane actor, it should have first been disabled.
The actor should have first been detached from any hierarchy by using
BrActorRemove ().

Between BrBegin () ,, & BrEnd () ;.

Effectively applies BrActorRemove () ;; and BrActorFree (), to each child of
the actor. Calls BrResFree () ;, to release storage for the actor and any attached
data (e.g. type specific data created by default).

Copyright © 1996 Argonaut Technologies Limited

br_actor

Remarks: Not recommended to be applied to an actor during rendering of the hierarchy that
it is part of.

Ensure that any references to the actor or its children will not be used subsequent
to this call. Remember that a light or clip plane should be disabled before it is
removed and freed.

Example:
br_actor * t_pActor=BrActorAllocate (BR_ACTOR_MODEL,NULL) ;
BrActorFree (t_pActor);

See Also: BrActorAllocate (),

BrResFree (),

Supplementary

BrActorEnum ()

Description: Enumerates an actor’s children, calling a user supplied call-back function for each
child actor.

Declaration: br_uint_32 BrActorEnum(br_actor* parent,
br_actor_enum cbfn* callback, void* arg)

Arguments: br_actor * parent
A pointer to the actor whose children are to be enumerated.
br actor enum cbfn * callback
A pointer to the call-back function to be called for each child actor.
void * arg
The argument to pass to the call-back function (use NULL if not required).
Preconditions: ~ Between BrBegin () ,, & BrEnd() ;.

Effects: For each child of parent, callback is invoked supplied with a pointer to the
child and the arg pointer. If callback returns a non-zero result, the
BrActorEnum (), function will immediately return with the same result,
otherwise the enumeration continues until all children have been enumerated.

Result: br_uint_32
The result is zero, or the first and only non-zero result returned by callback.

Remarks: An entire actor hierarchy can be enumerated simply by having the call-back
function invoke BrActorEnum () ; itself.
Example:
br_uint_32 BR_CALLBACK CountDescendantsCB(br_actor* a,void* n)
{ ++*(int*)n;

return BrActorEnum(a,CountDescendantsCB,n);

Copyright © 1996 Argonaut Technologies Limited 9 3

br_actor

See Also:

int CountDescendants (br_actor* a)

{

int N=0;
BrActorEnum(a, CountDescendantsCB, &N) ;

return N;

br_actor_ enum_cbfn,,

BrActorSearch ()

Description:

Declaration:

Arguments:

Preconditions:

94

Effects:

Result:

Remarks:

Traverse an actor’s descendants, searching for an actor of a particular generation
with a lineage and identifier matching a specified wild carded string. To find actors
anywhere within a hierarchy will require the additional use of BrActorEnum () ;.

br_actor* BrActorSearch (br_actor* root, const char* pattern)
br_actor * root

A pointer to an actor.

const char * pattern

Zero terminated character string containing the search pattern. This specifies the
generation of actor required by separating descendants with slash characters
(‘/’), e.g. “/<Child>/<Grand-child>/<Great grand-child>/etc.”.
Identifiers of actors along the lineage may be matched exactly or in combination
with the wild-card characters ‘*’ (match any number of any characters) and ‘?’
(match any single character). The pattern is fully permuted, e.g. “b*an?s” will
match “bananas”, “banks”, and “bandstands”.

Between BrBegin () ,, & BrEnd () ,,.
Compares the actor’s descendants’ identifiers with the respective component of

the search pattern. Terminates as soon as the complete lineage matches, or all
possible matching lineages have been explored.

br actor *

A pointer to the first actor that was found whose lineage matched the search
pattern, or NULL if there was no match.

Note that the search pattern’s first generation will be compared with the identifiers
of the children of root — the identifier of root is not involved in the pattern
matching process.

Where more than one match is possible, it is not recommended that any reliance be
placed on which match is found first. No assumption should be made regarding
how the actor hierarchy is traversed, e.g. whether branch by branch or generation
by generation.

To find an actor irrespective of its lineage, use this function in combination with
BrActorEnum() ;.

Copyright © 1996 Argonaut Technologies Limited

br_actor

Example: Given a root actor with identifier “Root”, children “Child1” and “Child2"”,
and child “Child1” with grand-children “Grand-sonl” and “Grand-
daughterl”, and child “Child2” with grand-children “Grand-son2” and
“Grand-daughter2”:

“Child?/Grand*1” would match either “Grand-sonl” or “Grand-
daughterl”.

“Child1” would match “Childl”.

“x /*son?’ would match either “Grand-sonl” or “Grand-son2”.

See Also: BrActorSearchMany (),

BrActorEnum ().,

BrActorSearchMany ()

Description: ~ Traverse an actor’s descendants, searching for actors of a particular generation with
a lineage and identifier matching a specified wild carded string.

Declaration: br_uint_32 BrActorSearchMany (br_actor* root,
const char* pattern, br_actor** actors, int max)

Arguments: br_actor * root

A pointer to an actor.

const char * pattern

Zero terminated character string containing the search pattern. This specifies the
generation of actor required by separating descendants with slash characters
(‘/’), e.g. “/<Child>/<Grand-child>/<Great grand-child>/etc.”.
Identifiers of actors along the lineage may be matched exactly or in combination
with the wild-card characters ‘*’ (match any number of any characters) and ‘2’
(match any single character). The pattern is fully permuted, e.g. “b*an?s” will
match “bananas”, “banks”, and “bandstands”.

br actor ** actors

A pointer to a series of actor pointers. Storage must have been allocated (though not
necessarily initialised) for at least max actor pointers.
int max
The maximum number of matched actors to store at actors.
Preconditions: Between BrBegin () ,, & BrEnd () ;.

Effects: ~ Compares the actor’s descendants’ identifiers with the respective component of
the search pattern. Terminates as soon as the number of complete lineage matches
has reached max, or all possible matching lineages have been explored.

Result: br_uint_32

The number of matched actors stored at act ors. This will be between zero and
max (inclusive).

Copyright © 1996 Argonaut Technologies Limited 9 5

br_actor

Remarks: The same as BrActorSearch (), except that it allows matches of more than one
actor.

Note that the search pattern’s first generation will be compared with the identifiers
of the children of root — the identifier of root is not involved in the pattern
matching process.

To find actors irrespective of their lineage, use this function in combination with
BrActorEnum() ;.
Example:
br_actor* t_aActorWheels[10];

int t_n;

t_n=BrActorSearchMany (pActorLorry, “Chassis/*Axle/
Wheel?”,t_aActorWheels, 10);

ASSERT (! (t_n%2));/* Even number of wheels */

See Also: BrActorSearch(),, BrActorEnum(),,

Import & Export

Actor hierarchies can be saved and loaded in their entirety. This can be useful for setting up scenes,
or importing arbitrary, complex systems.

BrActorFileCount ()

Description: ~ Locate a given file and count the number of actor hierarchies stored in it.

Declaration: br uint_32 BrActorFileCount (const char* filename,
br uint_16* num)

Arguments: const char * filename

Name of the file previously created by BrActorSave (),; or
BrActorSaveMany (), (See Filing System Support, page 57).

br uint_16 * num

Pointer to destination into which the number of actor hierarchies will be stored. If

NULL, the file will still be located and the success result returned, but no count will
be made.

Preconditions: Between BrBegin () ,, & BrEnd () ,,. Filing system available.
Effects: Searches for £ilename, if no path specified with file looks in current directory, if
not found tries, in order, the directories listed in BRENDER_PATH (if defined).

Counts the number of actor hierarchies stored in the file. If the file is not an actor
file, the function is still successful, but would obviously produce a zero count of
actors.

9 6 Copyright © 1996 Argonaut Technologies Limited

br_actor

Result: br_uint_32
Returns zero if successful (the file was found), non-zero otherwise.

See Also: BrActorload(),, BrActorLoadMany ()

BrActorSave ()

Description: ~ Saves an actor and its descendants as a hierarchy.

Declaration: br uint_32 BrActorSave (const char* filename,
const br_actor* actor)

Arguments: const char * filename

The name of the file under which the hierarchy should be saved (See Filing System
Support, page 57).

const br_actor * actor

A pointer to the effective root actor of the hierarchy to be saved.

Preconditions: Between BrBegin () ,, & BrEnd () ,,. Available filing system. Success depends on
sufficient file space.

Effects: If successful, the actor is written to a file” along with the identifier ofits
material (if non-NULL), the identifier ofits model (if non-NULL), and any type
specific data. This same process is then applied to each child in turn.

Result: br_uint_ 32
The result is one if the hierarchy was saved successfully, and zero if not.
Remarks: If the function fails (returns zero), the filing system can be considered returned to

the state it was in just before the call, e.g. no file created.

The hierarchical relationship between actors is recorded implicitly, no use is made
of the actor’s parent, next, prev, children, or identifier members.

Note, that model and material data is not saved with actors, therefore this should
be saved separately if required. It will need to be available to BrModelFind (),
and BrMaterialFind (), (in the registry) before the actor hierarchy is loaded.

Example:

return BrActorSave (“MyScene”,pActorScene) ;

See Also: BrActorLoad(),, BrActorSaveMany () ,, BrWriteModeSet (),

BrActorLoad ()

Description: Load a hierarchy of actors from a file.

* Any existing file of the same name is overwritten.

Copyright © 1996 Argonaut Technologies Limited 9 7

br_actor
Declaration:

Arguments:

Preconditions:

Effects:

Result:

Remarks:

Example:

See Also:

br_ actor* BrActorLoad(const char* filename)
const char * filename

Name of the file previously created by BrActorSave (),, or
BrActorSaveMany (), (loads the first hierarchy) (See Filing System Support,
page 57).

Between BrBegin () ,, & BrEnd () ,,. Filing system available. Memory can be
allocated.

Searches for £ilename, if no path specified with file looks in current directory, if
not found tries, in order, the directories listed in BRENDER_PATH (if defined).

Allocates a root actor, reads members (type, identifier, render_style, t)
in the order they were saved in, attempts to set model with BrModelFind () ,,
using the model identifier read, attempts to set material with
BrMaterialFind () , using the material identifier read, allocates and sets the
type specific actor data. Any child actors are read using this same process (thus
recursively), and then added to this actor using BrActorAdd () ;. If a model or
material was not found, the member is left at NULL.

br actor *
A pointer to the root actor of the loaded hierarchy, or NULL if unsuccessful.

Ensure that necessary models and materials are loaded and added into the registry
before calling this function.

br_actor* t_pMyScene=BrActorLoad (“MyScene”) ;

BrActorSave(),, BrActorLoadMany ()

BrActorSaveMany ()

Description:

Declaration:

Arguments:

Preconditions:

98

Saves a series of actors and their descendants as hierarchies.

br_uint_32 BrActorSaveMany (const char* filename,
const br_actor* const * actors, br uint_16 num)

char * filename

The name of the file under which the hierarchies should be saved (See Filing
System Support, page 57).

const br actor * const * actors

A pointer to a series of num pointers to effective root actors of the hierarchies to be
saved. The actors do not necessarily need to be from unrelated hierarchies.

br uint_16 num
Number of hierarchies to save.

Between BrBegin () ,, & BrEnd () ,,. Available filing system. Success depends on
sufficient file space.

Copyright © 1996 Argonaut Technologies Limited

Effects:

Result:

Remarks:

Example:

See Also:

br_actor

If successful for every one of the actor hierarchies, each is saved as described in
BrActorSave (), except that all are written to the same file".

br_uint_32

The function returns the number of complete actor hierarchies that were written to
the file. This will be between zero and num (inclusive). Success is indicated by the
return value being equal to num.

If the function fails (returns a value less than num), the filing system can be
considered returned to the state it was in just before the call, e.g. no file created.

Note, that model and material data is not saved with actors, therefore this should

be saved separately if required. It will need to be available to BrModelFind (),
and BrMaterialFind () ; (in the registry) before any of the actor hierarchies are
loaded.

br_actor* apActorsInMyScene[N];

if

(BrActorSaveMany (“MyScene”, apActorsInMyScene, (br_uint_16)N)<N)

BrActorLoadMany () ,,, BrActorSave ()., BrWriteModeSet (),

BrActorLoadMany ()

Description:

Declaration:

Arguments:

Preconditions:

LLoad one or more hierarchies of actors from a file.

br_uint_32 BrActorLoadMany (const char* filename,
br actor** actors, br uint_16 num)

const char * filename

Name of the file previously created by BrActorSaveMany (), or
BrActorSave (). See Filing System Support for details of file naming.

br actor ** actors

A pointer to a series of actor pointers. Storage must have been allocated (though not
necessarily initialised) for at least num actor pointers. See
BrActorFileCount (), for a way of determining this value from a file.

br uint_16 num
The maximum number of matched actors to store at actors.

Between BrBegin () ,, & BrEnd () ;. Filing system available. Memory can be
allocated.

* Any existing file of the same name is overwritten.

Copyright © 1996 Argonaut Technologies Limited 99

br_actor

Effects: Searches for £ilename, if no path specified with file looks in current directory, if
not found tries, in order, the directories listed in BRENDER_PATH (if defined).

Stores a pointer to the root actor of each loaded hierarchy into the respective
element of actors. See BrActorLoad (), for details of how each hierarchy is
loaded.

Result: br_uint_32
The number of actor hierarchies loaded successfully. Will be between zero and
num (inclusive).

Remarks: Ensure that necessary models and materials are loaded and added into the registry
before calling this function.

Example:
br_actor* t_aScenes[5];
br_uint_32 t_u32;

t_u32=BrActorLoadMany (“MyScenes”, t_aScenes, 5);

See Also: BrActorSaveMany (),, BrActorLoad ().

1 OO Copyright © 1996 Argonaut Technologies Limited

br_actor_enum_cbfn

br actor enum cbfn

The Call-Back Function

This type defines a function, supplied to BrActorEnum (), and to be called by it for an actor’s

children.

The typedef

(See fwproto.h fora precise declaration)

br_uint_32

br_actor_enum_cbfn (br_actor*, wvoid*)Enumerator

Specification

CBFnActorEnum/()

Description:

Declaration:

Arguments:

Preconditions:
Effects:

Result:

See Also:

An application defined call-back function accepting an actor and an application
supplied argument (as supplied to BrActorEnum (),,).

br_uint_32 BR_CALLBACK CBFnActorEnum(br_actor* a, void* arg)
br_actor * a

One of the child actors enumerated by BrActorEnum () ,,.

void * arg

The argument supplied to BrActorEnum () ;.

BRender has completed initialisation.

Application defined. Avoid adding or removing children to the parent actor within
this function.

br_uint_32
Any non-zero value will terminate the enumeration and be returned by
BrActorEnum (). Return zero to continue the enumeration.

BrActorEnum (), BrActorSearch ().

Copyright © 1996 Argonaut Technologies Limited 1 O 1

br_allocator

br allocator

The Structure

This structure represents the definition of a memory allocation system or memory handler. All
BRender’s memory allocation is provided by just three functions, which can be specified by the
programmer. This is essential in cases where the standard C library functions, which BRender’s
handler uses by default, are not available. Sometimes, more sophisticated behaviour is desired, or
diagnostic features are needed.

The typedef

(See brmem. h for precise declaration and ordering)

Handling Functions

brmem_allocate_cbfn * allocate Memory allocation function
brmem_free_cbfn * free Memory deallocation function
brmem_inquire_cbfn * inquire Memory inquiry function
Supplementary

char * identifier Allocator name
Members

Handling Functions

brmem_allocate _cbfn * allocate

This is a pointer to the memory allocation function (See brmem_allocate_cbfn,,,). This is called
by BrMemAllocate () ;.

brmem free cbfn * free

This is a pointer to the memory deallocation function (See brmem_free_cb£n,,). This is called by
BrMemFree () 5.

brmem_inquire_cbfn * inquire

This is a pointer to the memory inquiry function (See brmem_inquire_cbf£n,,,). This is called by
BrMemInquire ().

1 02 Copyright © 1996 Argonaut Technologies Limited

br_allocator

Supplementary

char * identifier

Pointer to unique, zero terminated, character string (or NULL if not required). A string constant is
recommended.

Operations

BrAllocatorSet ()

Description: Install a new set of memory allocation/deallocation functions.

Declaration: const br_allocator* BrAllocatorSet (const br allocator* newal

)

Arguments: const br allocator * newal

A pointer to an instance of abr_allocator,, structure.

Result: const br_allocator *

Returns a pointer to the old br_allocator,, structure.

Copy/Assign

Beware of copying the structure if identifier has been allocated from the heap.

Access & Maintenance

While the structure is the current allocator (most recently passed to BrAllocatorSet ()) the
members should not be changed. No maintenance required.

Referencing & Lifetime

The structure must remain valid until a new allocator is passed to BrAllocatorSet () .

Initialisation

The members should be set before the structure is passed to BrAllocatorSet () .

Construction & Destruction

The structure should ideally be statically constructed.

Copyright © 1996 Argonaut Technologies Limited 1 03

br_allocator

If constructed by ‘malloc’ ensure it is destroyed by ‘free’, i.e. the memory allocation handler that
provided the storage should be the one to reclaim it. Be careful if macros have been used to redefine
malloc to use BRender’s allocator. Generally, be aware of any constraints one handler may place on
memory allocated by another handler.

Supplementary

The identifier may be used to determine the current handler in use.

1 04 Copyright © 1996 Argonaut Technologies Limited

br_ angle

The Integral Type

br_angle

This is BRender’s own angle representation. One complete revolution corresponds to the entire
range of this data type, and therefore repeated rotations will ‘wrap around’correctly. Use whenever

an angle needs to be represented.

Also see br_scalar,,and br_euler,,,.

The typedef

(See angles.h fora precise declaration)

br_fixed_1luf br_angle Angle type
Related Functions

Degree/Angle conversion

br_scalar BrDegreeToRadian (br_scalar s)

Converts s from angular units of degrees into radians.

br_scalar BrRadianToDegree (br_scalar s)

Converts s from angular units of radians into degrees.

Arithmetic

An angle may be negated.

Two angles may be added and subtracted.

An angle may be multiplied or divided by a standard integral type.

The following trigonometric macros may be used:

BR_SIN(a) Return Sine of br_angle,,;; a asabr_scalar,,,.

BR_COS (a) Return Cosine of br_angle,,; a asabr_scalar,,.

BR_ASIN(s) Return angle whose Sine is br_scalar,,, s, as a br_angle,,,.
BR_ACOS (s) Return angle whose Cosine is br_scalar,,, s, as abr_angle,,.
BR_ATAN2 (y, x) Return angle whose Tangent is br_scalar,,, y/x, as a br_angle,,.

BR_ATAN2FAST (y, x) Faster, lower precision version of BR_ATAN2 (y, x).

See br_£fixed_ls,,, for details of fixed point functions used by these macros.

Copyright © 1996 Argonaut Technologies Limited

105

br_angle

Comparison

All standard comparison operators may be applied between two angles. An angle may be compared
with zero without conversion.

Conversion

From Numeric Constants
BR_ANGLE_DEG (x)
Converts x from a number of degrees to br_angle,;.

BR_ANGLE_RAD (x)
Converts x from a number of radians to br_angle,,,.

PI
If not already defined, PT is definedas 3.14159265358979323846.

From Integral Types

To convert from integral types, use br_scalar,,, as an intermediary.

From br._scalar,,
br_angle BrScalarToAngle (br_scalar s)

Converts s from a fractional revolution (0..1).

br_angle BrDegreeToAngle (br_scalar d)

Converts d from an angle in degrees.

br_angle BrRadianToAngle (br_scalar r)

Converts r from an angle in radians.

To Integral Types

To convert to integral types, use br_scalar,,, as an intermediary.

Tobr scalar,,
br_scalar BrAngleToScalar (br_angle a)
Converts a to a fractional revolution (0..1).

br_scalar BrAngleToDegree (br_angle a)
Converts a to an angle in degrees.

br_scalar BrAngleToRadian (br_angle a)
Converts a to an angle in radians.

Copy/Assign

Only assign zero or angles. Use conversions in all other cases.

1 06 Copyright © 1996 Argonaut Technologies Limited

br_boolean

br boolean

The Integral Type

BRender’s boolean type. Use this type where only a boolean value is intended.

The typedef

(See compiler.h for precise declaration)

int br_boolean Normal type of boolean C expression
Arithmetic

All standard C arithmetic operators are valid as with the standard C boolean type, i.e int.

Comparison

All standard C comparison operators are valid as with the standard C boolean type, i.e int.

Conversion

From True

BR_TRUE

Use as a value representing boolean true.

From False
BR_FALSE

Use as a value representing boolean true.
From any integral type

BR_BOOLEAN (exp)

Converts exp from any integral or pointer value into a boolean value.

Copy/Assign

Freely assign (br_boolean to br_boolean, that is). Use wherever a boolean value is intended.

Copyright © 1996 Argonaut Technologies Limited 1 07

br_bounds

br bounds

The Structure

A data structure describing an axis-aligned bounding box for a model or hierarchy of actors.

The typedef

(See vector.h for precise declaration and ordering)

br_vector3 min Minimal corner
br_vector3 max Maximal corner
Related Functions

Scene Modelling

See BrScenePick3D ().

Image Support

See BrOnScreenCheck () ,s..

Related Structures

Note that this structure is not used by the render bounds call-back function (it represents its bounds
in pixel co-ordinates).

Scene Modelling

See br_actor,, br_model,,,.

Members

br vector3 min

Co-ordinates of the minimal corner of the bounding box.

br vector3 max

Co-ordinates of the maximal corner of the bounding box.

1 08 Copyright © 1996 Argonaut Technologies Limited

br_bounds

Operations

BrBoundsToMatrix34 ()

Description: Find the transform that maps a 2 unit cube centred at the origin to the given
bounding box.

Declaration: br matrix34* BrBoundsToMatrix34 (br matrix34* mat,
const br_bounds* bounds)

Arguments: br_matrix34 * mat

A non-NULL pointer to the destination matrix, into which will be placed the
transform.

const br_bounds * bounds

A non-NULL pointer to the bounding box.

Effects: Will calculate the transform required to transform a 2 unit cube centred at the origin
to the given bounding box.

Result: br_matrix34 *
The pointer to the destination matrix, mat, returned for convenience.

Remarks: Typically used to facilitate 3D cursors, e.g. a child model actor with a cursor model
whose co-ordinates are based upon a 2 unit cube, can use this function to define its
transform.

See Also: br_actor,,

Copy/Assign

Copy by assignment.

Initialisation

Use vector initialisers, e.g.

br_bounds my_bounds={BR_VECTOR3 (-1.,-2.,-3.),
BR_VECTOR3(1.,2.,3.)1};

Copyright © 1996 Argonaut Technologies Limited 1 09

br_camera

br camera

The Structure

BRender’s camera data structure. See Camera Actors.

The typedef

(See camera. h for precise declaration and ordering)

Behaviour
br_uint_8

Parameters
br_angle
br_scalar
br_scalar
br_scalar
br_scalar
br_scalar

Supplementary
char *
void *

Related Functions

Image Support

type

field of view
hither_z
yon_z

aspect

width

height

identifier
user

Camera type

Field of view

Front of view volume

Back of view volume
Aspectratio (x/y)

Width of projection surface
Height of projection surface

Camera name
User data (application dependent)

See also BrActorToScreenMatrix4 (),, BrMatrix4Perspective () .

Related Structures

Scene Modelling

See br_actor,,.

110

Copyright © 1996 Argonaut Technologies Limited

br_camera

Members
Behaviour

br_uint_8 type

Type of camera. Which can be one of the following:

Camera type Behaviour

BR_CAMERA_PARALLEL A parallel camera. Object size is independent of
its distance from the camera.

BR_CAMERA_PERSPECTIVE A standard perspective camera.

Parameters

br_angle field_of_view

Field of view, i.e. the angle subtended at the camera between the top and bottom of the view volume
(pyramid). Applies only to perspective cameras. The value should be greater than zero and less than
180°. Note than this is the full angle, i.e. not the half angle, between the view z axis and top (or
bottom) of view volume.

br_scalar hither_z

Distance of front of view volume from camera along negative z axis, i.e. -hither_z in view co-
ordinates. The value should be greater than zero.

br_scalar yon_z

Distance of back of view volume from camera along negative z axis, i.e. -yon_z in view co-ordinates.
The value should be greater than hither_ z.

br_scalar aspect

Scaling factor for width of viewing volume. For perspective cameras, =1 in y view ordinates is mapped
to the height of the output pixel map, and taspect in x view ordinates is mapped to the widch of
the output pixel map. For parallel cameras, the height of the view volume is mapped to the height
of the output pixel map, whereas widthXxaspect is mapped to the width of the output pixel map.

Copyright © 1996 Argonaut Technologies Limited 1 1 1

br_camera

Correct Aspect

If you want to maintain correctly proportioned images on a screen, then the ratio between the sides
of the physical image should be the same as that of the view volume. Therefore, for perspective
cameras, aspect should be calculated as the ratio between the physical dimensions of the output
pixel map, i.e. its physical width divided by its physical height (both of which may be computed
directly in terms of pixel map resolution if pixels are square). For parallel cameras, aspect would
have to be defined such that widthXaspect+height is the same as the ratio between the
physical dimensions of the output pixel map — this is effectively modifying the width of the view
volume to neatly fit the pixel map. In this case, aspect is relatively redundant as it might as well
be left at unity with just width needing to be changed.

br_scalar width

Width of view volume (rectangular prism) in world co-ordinates (before aspect is applied) — the
actual width is widthXaspect. Applies only to parallel cameras.

br_scalar height

Height of view volume (rectangular prism) in world co-ordinates. Applies only to parallel cameras.

Supplementary

char * identifier

Pointer to unique, zero terminated, character string (or NULL if not required).

If identifier is set by BrActorLoad (), or BrActorLoadMany () o it will have been constructed
using BrResStxrDup () ,-

void * user

This member may be used by the application for its own purposes. It is initialised to NULL upon
allocation (if allocated by BRender), and not accessed by BRender thereafter.

Copy/Assign

The camera should copied using structure assignment.

Access & Maintenance

Modification is not recommended during rendering, especially if applied to the viewing camera. The
members should always accord with the camera type. The aspect may need to be updated in line with
changing image dimensions.

1 1 2 Copyright © 1996 Argonaut Technologies Limited

br_camera

Referencing & Lifetime

If not constructed by BrActorAllocate (), it may be multiply referenced (given a sufficient
lifetime). The camera structure should be maintained at least as long as it is referenced by any actor.

Initialisation

Only members applicable to the camera type need be initialised.

E.g. BrActorAllocate (BR_ACTOR_CAMERA,NULL) currently initialises a br_camera,,,
structure as follows (after performing memset (, 0, sizeof (br_camera))):

br_camera* camera;

camera->type=BR_CAMERA_PERSPECTIVE;
camera->field_of_view=BR_ANGLE_DEG (45) ;
camera->hither_z=BR_SCALAR(0.1);
camera->yon_z=BR_SCALAR(10.0);
camera->aspect=BR_SCALAR(1.0);

Construction & Destruction

The camera structure can either be constructed/destroyed by the application, or by supplying NULL
to BrActorAllocate ().

Supplementary

Cameras created by BrActorAllocate (), are allocated from the BR_MEMORY_CAMERA
(“CAMERA") resource class, and hence can benefit from the resource class supplementary functions.

Import & Export

Cameras are imported and exported with actors that specify them. See BrActorLoad () and
BrActorSave ().

Copyright © 1996 Argonaut Technologies Limited 1 1 3

br_colour

br colour

The Integral Type

BRender’s native 32 bit colour representation. Red, Green and Blue each have 8 bits, leaving a further
8 bits for an optional alpha value (typically representing opacity).

Blue occupies bits 0 to 7, Green occupies bits 8 to 15, Red occupies bits 16 to 23, and Alpha occupies
bits 24 to 31.

Note that in some situations, a colour of zero is considered transparent (See br_material,,, and
br_pixelmap.,,,).

The typedef

(See colour. h for precise declaration and ordering)

unsigned long int br_colour Packed RGBA values
Arithmetic

Binary operations (And &, Or |, Not ~, XOr *) may sometimes be useful. However, all operands
should still be colours, and if necessary, constructed using BR_COLOUR_RGB ().

Comparison

Only equality comparisons are valid between colours.

Conversion

From individual component values
BR_COLOUR_RGB (r,g,b)

Returns a br_colour,, given three 8-bit colour components.
BR_COLOUR_RGBA (r, g,b, a)

Returns a br_colour,, given three 8-bit colour components and an 8-bit alpha
component.

To component values
BR_RED (c)

Returns the Red component of a colour (0..255).
BR_GRN (c)

Returns the Green component of a colour (0..255).

1 1 4 Copyright © 1996 Argonaut Technologies Limited

br_colour

BR_BLU (c)

Returns the Blue component of a colour (0..255).
BR_ALPHA (c)

Returns the Alpha component of a colour (0..255).

Copy/Assign

Only assign colours.

Copyright © 1996 Argonaut Technologies Limited 1 1 5

br_diag_failure_cbfn

br diag_failure_cbfn

The Call-Back Function

This type defines a call-back function, primarily intended for the failure member of the
br_diaghandler,, structure.

The typedef

(See brdiag.h fora precise declaration)

void br_diag failure_cbfn (const char *)Handle failure and message
Specification

CBFnDiagFailure ()

Description: ~ An application defined call-back function that is called upon a serious, unexpected
error or failure, with a descriptive message. Remember, a release version of your
software should never fail.

Declaration: void BR_CALLBACK CBFnDiagFailure (const char* message)

Arguments: const char * message
Pointer to zero terminated character string describing the failure.

Preconditions: ~ 'The diagnostic handler has been setup (BrDiagHandlerSet () ,,,). BRender has
not necessarily completed initialisation. In an unknown state. A failure has
occurred. BRender is not expecting the function to return.

Effects: Behaviour is up to the application, but the following procedure can be taken as a
suggestion.

Set a failure condition flag (to detect escalation). Optionally, immediately inform
user of failure. Re-establish a known state. Perform diagnostics of hardware and
software, inform user of any diagnosed faults (optionally, also of original failure).
End failure condition, and resume (do not return).

Remarks: Avoid allocating memory in your failure call-back function, or you may need special
care in handling out-of-memory conditions. BRender’s default failure call-back
function does not allocate memory.

Example: See stddiag.c for examples of diagnostic handler functions.
See Also: CBFnDiagWarning() .

1 1 6 Copyright © 1996 Argonaut Technologies Limited

br_diag warning_cbfn

br_diag warning cbfn

The Call-Back Function

This type defines a call-back function, primarily intended for the warning member of the
br_diaghandler,, structure.

The typedef

(See brdiag.h fora precise declaration)

void br_diag_warning cbfn(const char *)Handle warning and message
Specification

CBFnDiagWarning()

Description: An application defined call-back function that is called upon a non-serious,
unexpected failure, with a message describing the warning,.

Declaration: void BR_CALLBACK CBFnDiagWarning (const char* message)

Arguments: const char * message

Pointer to zero terminated character string describing the warning.

Preconditions: ~ 'The diagnostic handler has been setup (BrDiagHandlerSet () ,,,). BRender has
not necessarily completed initialisation. In a recoverable state.

Effects: Optionally inform user of warning. Return.

Remarks: This function is primarily intended for debugging and testing purposes. BRender
does not currently generate warnings.

Example: See stddiag.c for examples of diagnostic handler functions.
See Also: CBFnDiagFailure ()

Copyright © 1996 Argonaut Technologies Limited 1 1 7

br_diaghandler

br diaghandler

The Structure

This structure represents the definition of a diagnostic handler. All BRender’s diagnostics are
handled by just two functions, which can be specified by the programmer. This is essential in cases
where stdout and stderr (as used by the standard C library functions) are not available (or not
suitable).

The typedef

(See brdiag.h for precise declaration and ordering)

Handling Functions

br_diag warning cbfn * warning Warning delivery function
br_diag_failure_cbfn * failure Failure delivery function
Supplementary

char * identifier Diagnostic handler name
Members

Handling Functions

br_diag_warning_ cbfn * warning

This is a pointer to the warning delivery function (See br_diag_warning_cbfn,;;). This is
invoked by the warning macros (See Diagnostic Support, page 65).

br_diag_failure_cbfn * failure

This is a pointer to the failure delivery function (See br_diag_ failure_cbfn,,). This is invoked
by the failure, fatal and assertion macros (See Diagnostic Support).

Supplementary

char * identifier

Pointer to unique, zero terminated, character string (or NULL if not required). A string constant is
recommended.

1 1 8 Copyright © 1996 Argonaut Technologies Limited

br_diaghandler

Operations

BrDiagHandlerSet ()

Description: Install a new diagnostic handler.
Declaration: br_diaghandler* BrDiagHandlerSet (br_diaghandler* newdh)
Arguments: br_diaghandler * newdh

A pointer to an instance of a br_diaghandler,, structure (should really be
static). If NULL the default diagnostic handler will be used (uses the standard C I/
O library).

Result: br_diaghandler *

Returns a pointer to the old diagnostic handler (possibly NULL). This may be used
to pass diagnostics on, if desired.

Remarks: The diagnostic handler may be specified at any suitable time. BrBegin () ,, will
specify a default diagnostic handler if no handler is currently defined.

Note that diagnostics generated without a diagnostic handler present will only be
caught in the debug build.

If not BrBegin () ,, This should be the first BRender function called.

You should cater for the circumstance arising, if in the process of handling
diagnostics, your diagnostic handler may call functions that may themselves
generate diagnostics.

Copy/Assign

Beware of copying the structure if identifier has been allocated from the heap.

Access & Maintenance

While the structure is the current handler (most recently passed to BrDiagHandlerSet () ,;,) the
members should not be changed. No maintenance required.

Referencing & Lifetime

The structure must remain valid at least until a new handler is passed to BrDiagHandlerSet (),
and may need to remain valid longer if a newer diagnostic handler uses it to pass diagnostics on.

Initialisation

The members should be set before the structure is passed to BrDiagHandlerSet () ..

Copyright © 1996 Argonaut Technologies Limited 1 1 9

br_diaghandler

Construction & Destruction

The structure should ideally be statically constructed.

Supplementary

The identifier may be used to determine the current handler in use.

1 20 Copyright © 1996 Argonaut Technologies Limited

br_euler

br euler

The Structure

Euler” angles can be used to represent the orientation of an object. Three separate rotations are
applied in turn, in a specific order. Euler angles can be either static or relative. With relative Euler
angles, the rotations are performed around axes relative to the rotations already performed. With
static Euler angles, the rotations are performed around static axes.

The typedef

(See angles.h for precise declaration and ordering)

br_angle a First angle

br_angle b Second angle

br_angle c Third angle

br_uint_8 order Rotation order (static/relative)
Related Functions

Maths

See BrMatrix34ToEuler () ,,, BrMatrix4ToEuler () ,,, BrQuatToEuler () i,

Related Structures

Maths

See br_transform,,.

Members

br_angle a

First angle of rotation.

br_angle b

Second angle of rotation.

br_angle c

Third angle of rotation.

* Pronounced ‘oiler’ as in boiler.

Copyright © 1996 Argonaut Technologies Limited 1 2 1

br_euler

br uint 8 order

The order in which the angles of rotation are applied. The following symbols define the set of values
which may be used. The first three letters (of the suffix to BR_EULER) indicate the order in which
rotations occur about which axes. The last letter indicates whether the rotations are static or relative.

BR_EULER_XYZ_S
BR_EULER_XYX_S
BR_EULER_XZY_S
BR_EULER_XZX_S
BR_EULER_YZX_S
BR_EULER_YZY_S
BR_EULER_YXZ_S
BR_EULER_YXY_S
BR_EULER_ZXY_S
BR_EULER_ZXZ_S
BR_EULER_ZYX_S
BR_EULER_ZYZ_S
BR_EULER_ZYX_R
BR_EULER_XYX_R
BR_EULER_YZX_R
BR_EULER_XZX_R
BR_EULER_XZY_R
BR_EULER_YZY_R
BR_EULER_ZXY_R
BR_EULER_YXY_R
BR_EULER_YXZ_R
BR_EULER_ZXZ_R
BR_EULER_XYZ_R
BR_EULER_ZYZ_R

For Example

BR_EULER_XYZ_S is equivalent to the matrix transform:

RX(a)Ry(b)RZ(C)

BR_EULER_XZY_R Is equivalent to the matrix transform:

Ry(C)RZ(b)R

See br_matrix34,,,.

Arithmetic

See br_transform,,,.

122

Copyright © 1996 Argonaut Technologies Limited

Conversion

br_euler

From Quaternions, Matrices and Transforms

See BrQuatToEuler () ;,;, BrMatrix34ToEuler () ,,, BrTransformToTransform () i,

To Quaternions, Matrices and Transforms

See BrEulerToQuat () ,;, BrEulerToMatrix34 () ,,;, and BrEulerToMatrix4 () ,, as described

below.

Also see BrTransformToTransform () s,.

BrEulerToQuat ()

Description:

Declaration:

Arguments:

Result:

Convertabr_euler,,, toa quaternion, that would have the same transformational
effect.

br_quat* BrEulerToQuat (br_quat* g, br_euler* euler)
br_quat * g

A pointer to the destination quaternion to receive the conversion.

br euler * euler

A pointer to the source Euler angle.

br_quat *

Returns g for convenience.

BrEulerToMatrix34 ()

Description:

Declaration:

Arguments:

Result:

Convert abr_euler,,, to a 3D affine matrix, that would have the same
transformational effect.

br matrix34* BrEulerToMatrix34 (br_matrix34* mat,
const br_euler* euler)

br matrix34 * mat

A pointer to the destination matrix to receive the conversion.
const br euler * euler

A pointer to the source Euler angle.

br_matrix34 *

Returns mat for convenience.

Copyright © 1996 Argonaut Technologies Limited 1 2 3

br_euler

BrEulerToMatrix4 ()

Description: Convert abr_euler,,, to a 3D affine matrix, that would have the same
transformational effect.

Declaration: br matrix4* BrEulerToMatrix4 (br_matrix4* mat,
const br_euler* euler)

Arguments: br_matrix4 * mat
A pointer to the destination matrix to receive the conversion.
const br_euler * euler
A pointer to the source Euler angle.
Result: br_matrix4 *
Returns mat for convenience.

Remarks: Equivalent to BrEulerToMatrix34 () .

Copy/Assign

Copy by assignment. Freely reference.

Initialisation

Initialise by member (use BR_ANGLE_DEG () or BR_ANGLE_RAD ()) or structure assignment. Zero is a
valid order.

1 2 4 Copyright © 1996 Argonaut Technologies Limited

br_face

br face

The Structure

The face data structure, describing a single triangular face.

The typedef

(See model.h for precise declaration and ordering)

br_uint_16 vertices[3] Vertices around face

br_material * material Face material

br_uint_16 smoothing Controls smoothing between shared edges
br_uint_8 flags Face flags

Related Structures

See br_model,,, for the structure in which vertices are used.

Members

br uint 16 vertices|[3]

An array of vertex indices specifying the vertices of this face. This defines a polygon of the model’s
the surface. The order in which vertices are listed is important. The primary, visible side of a face
from the viewpoint has its vertices listed in anticlockwise order.

See br_model,,, and br_vertex,,.

br material material

Pointer to the material structure associated with this face. Note that if this is NULL and the face is
part of a model actor’s model, then the model actor’s material (as specified or inherited) will be used.

br_uint_16 smoothing

A 16 bit field in which each bit represents a smoothing group. If, when smooth-shading a surface, two
adjacent faces share a smoothing group, the edge between them will be smooth.

br_uint_8 flags

Face flags, indicating whether the edges of the face abut co-planar faces, and thus do not need to be
drawn in the wire-frame render style BR_RSTYLE_EDGES. The following table describes each flag.

Copyright © 1996 Argonaut Technologies Limited 1 2 5

br_face

Flag Meaning

BR_FACEF_COPLANAR_0 The face adjoining edge 0 is co-planar with this face.
BR_FACEF_COPLANAR_1 The face adjoining edge 1 is co-planar with this face.
BR_FACEF_COPLANAR_2 The face adjoining edge 2 is co-planar with this face.

Copy/Assign

Face structures should not be copied by assignment — copy member-wise instead. Note that faces so
copied, will still need the models that refer to them to be updated before they are involved in
rendering.

Access & Maintenance

Members may be freely accessed. The structure should remain valid while it is referenced by any
model. Some private members are modified if BrModelUpdate (),,, is applied to the model that
references the face. Any changes to members will not affect models that use the face until
BrModelUpdate (), is called. BrModelUpdate (),, must be called before rendering if any changes
have been made to faces of models that are in the registry.

Referencing & Lifetime

Be careful of referencing faces especially ones allocated by BrModelAllocate ()., they are liable
to be moved around during BrModelUpdate () .,, say. Faces are generally only allocated as arrays
completely describing a model. Always access using indexing from the model’s faces member.

The structure should remain valid while it is referenced by any model. If constructed by
BrModelAllocate (), it will be destroyed when the model it was constructed with is destroyed (or
upon BrModelUpdate () ,, if BR_MODF_KEEP_ORIGINAL had not been set beforehand).

Initialisation
If not constructed by BrModelAllocate () ,,;, ensure the structure is first zeroed, e.g using
memset (..., 0,sizeof (br_face)). Set the members appropriately. Models that refer to such

faces must have the flag BR_MODF_KEEP_ORIGINAL set. Models referring to initialised faces must be
updated before they are involved in rendering.

Construction & Destruction

If this structure is constructed by BrModelAllocate () ,,; (or indirectly by BrModelLoad () ,,,) it will
be destroyed with the model (or upon BrModelUpdate () ,, if BR_MODF_KEEP_ORIGINAL had not
been set beforehand). It may be constructed (and appropriately destroyed) any other way (as long as
BR_MODF_KEEP_ORIGINAL is set in the model).

1 2 6 Copyright © 1996 Argonaut Technologies Limited

br_face

Supplementary

When constructed by BrModelAllocate (), faces are allocated from the “FACES” memory class.
It is probably better to organise any enumeration around models (see br_model,;,).

Import & Export

Faces can be imported and exported with models.

Copyright © 1996 Argonaut Technologies Limited 1 2 7

br_filesystem

br filesystem

The Structure

BRender routes all filing system calls through an instance of this structure. The syntax of each call-
back function corresponds exactly with the standard C library calls. This allows the user to tailor
BRender’s file system characteristics to suit any platform.

See BrFilesystemSet () ;, for details of how to specify a particular filing system handler.

The typedef

(See brfile.h for precise declaration and ordering)

Informational
brfile_attributes_cbfn * attributesFunction to inquire capabilities of filing system

Filing functions

brfile_open_read_cbfn * open_read Function to open a file for reading
brfile_open_write_cbfn *open_write Function to open a file for writing
brfile_close_cbfn * close Function to close an opened file
brfile_eof_cbfn * eof Function to check for end of file
brfile_getchr_cbfn * getchr Function to read one character
brfile putchr_ cbfn * putchr Function to write one character
brfile_read cbfn * read Function to read a block
brfile_write_cbfn * write Function to write a block
brfile_getline_cbfn * getline Function to read a line of text
brfile_putline_cbfn * putline Function to write a line of text
brfile_advance_cbfn * advance Function to advance through a stream
Supplementary

char * identifier Name of filing system
Members

Informational

brfile attributes _cbfn *attributes

This is a pointer to the function to obtain attributes of the filing system (see
brfile_attributes_cbfn,,). This is called by BrFileAttributes (), (See Filing System
Support, page 57).

1 2 8 Copyright © 1996 Argonaut Technologies Limited

br_filesystem

Filing Functions

brfile_open_read_cbfn * open_read

This is a pointer to the function to open a file for reading (see brfile_open_read_cbfn,,). This
is called by BrFileOpenRead () (See Filing System Support, page 57).
brfile_open_write_cbfn * open_write

This is a pointer to the function to open a file for writing (see brfile_open_write_cbfn,,). This

is called by BrFileOpenWrite ()5, (See Filing System Support, page 57).

brfile close cbfn * close

This is a pointer to the function to close a file (see brfile_close_cbfn,). This is called by
BrFileClose () (See Filing System Support, page 57).

brfile eof cbfn * eof

This is a pointer to the function to check for end of file (see brfile_eof_cbfn,,). This is called
by BrFileEof () (See Filing System Support, page 57).

brfile_getchr_cbfn * getchr

This is a pointer to the function to read one character (see brfile_getchr_cbfn,). This is called
by BrFileGetChar (), (See Filing System Support, page 57).

brfile_putchr_cbfn * putchr

This is a pointer to the function to write one character (see brfile_putchr_cbfn,,). Thisis called
by BrFilePutChar (), (See Filing System Support, page 57).

brfile read_cbfn * read

This is a pointer to the function to read a block (see brfile_read_cbfn,,,). This is called by
BrFileRead (), (See Filing System Support, page 57).

brfile write cbfn * write

This is a pointer to the function to write a block (see brfile_write_cb£n,,). This is called by
BrFileWrite () (See Filing System Support, page 57).

Copyright © 1996 Argonaut Technologies Limited 1 2 9

br_filesystem

brfile_getline_cbfn * getline

This is a pointer to the function to read a line of text (see brfile_getline_cbfn,). This is called
by BrFileGetLine () (See Filing System Support, page 57).

brfile_putline_cbfn * putline

This is a pointer to the function to write a line of text (see brfile_putline_cbfn,,). Thisiscalled
by BrFilePutLine () (See Filing System Support, page 57).

brfile advance_cbfn * advance

This is a pointer to the function to advance through a stream (see brfile_getchr_cbfn,). This
is called by BrFileGetChar (), (See Filing System Support, page 57).

Supplementary

char * identifier

Pointer to unique, zero terminated, character string (or NULL if not required). A string constant is
recommended.

Operations

BrFilesystemSet ()

Description: Install a new file system.

Declaration: const br filesystem* BrFilesystemSet (const br_ filesystem* ne
wfs)

Arguments: const br_filesystem * newfs
A pointer to an instance of a br_filesystem,, structure.
Result: const br_ filesystem *

Returns a pointer to the old br_filesystem,,, structure.

Copy/Assign

Beware of copying the structure if identifier has been allocated from the heap.

1 3 O Copyright © 1996 Argonaut Technologies Limited

br_filesystem

Access & Maintenance

While the structure is the current handler (most recently passed to BrFilesystemSet () ;) the
members should not be changed. No maintenance required.

Referencing & Lifetime

The structure must remain valid until a new handler is passed to BrFilesystemSet () .

Initialisation

The members should be set before the structure is passed to BrFilesystemSet () .

Construction & Destruction

The structure should ideally be statically constructed.

Supplementary

The identifier may be used to determine the current handler in use.

Copyright © 1996 Argonaut Technologies Limited 1 3 1

br_fixed_[1ls] [su] [£f]

br fixed [1ls]([su] [f]

The Integral Types

These are BRender’s current fixed point types. The application programmer should never use these
types directly. The documentation for these types is only included for completeness and is not meant
to validate their use. The representation of fixed point values and the validity of operations upon
them is likely to change in the future.

The typedef

(See fixed.h for precise declarations)

long
short
unsigned long
unsigned short
short
char
unsigned short
unsigned char

br_ fixed 1ls
br_fixed_1lsf
br_ fixed 1lu
br_ fixed luf
br fixed ss
br_ fixed ssf
br_ fixed su
br_fixed_suf

Fixed - Long Signed(15.16)

Pixed - Long Signed Fraction(0.15")
Fixed - Long Unsigned(16.16)

Fixed - Long Unsigned Fraction(0.16)
Fixed — Short Signed (7.8)

Fixed - Short Signed Fraction (0.7%)
Fixed - Short Unsigned (8.8)

Fixed - Short Unsigned Fraction(0.8)

Arithmetic

Fixed point values may be negated.

Two fixed point values of the same type may be added and subtracted.

A fixed point value may be multiplied or divided by a standard integral type.

The following functions all accept br_fixed_1s,,, arguments (except where otherwise stated).

br fixed 1ls

br fixed 1ls

br fixed_ls
br fixed 1ls

br fixed_ls
br fixed_ 1ls

br fixed_ls

BrFixedAbs (br fixed 1ls a)

Return the equivalent of abs (a).

BrFixedMul (br fixed 1ls a, br_fixed_1ls b)

Return the equivalent of a*b.

BrFixedMac2 (br_fixed_1s a,
d)

br fixed 1s b, br_fixed 1s c,

Return the equivalent of a*b + c*d.
BrFixedMac3 (br_fixed_1ls a, br_fixed 1ls b, br fixed_1ls c,
d,br_fixed 1ls e, br fixed 1ls f)

Return the equivalentof a*b + c*d + e*f.

BrFixedMac4 (br_fixed_1ls a, br_ fixed 1ls b, br fixed_1ls c,

* Note that signed fractions have one fewer bit than the fractional component of their non-fractional counterparts
to make way for the sign bit.

132

Copyright © 1996 Argonaut Technologies Limited

br fixed 1s

br fixed 1s

br fixed 1s

br fixed 1ls

br fixed 1s
br fixed 1ls

br fixed 1s

br fixed 1s

br fixed 1ls
br fixed 1s

br fixed 1ls

br fixed 1ls

br fixed 1s
br fixed 1s

br fixed 1ls

br fixed 1ls

br fixed 1ls

br fixed 1s

br fixed 1s
br fixed 1s

br fixed 1s

Copyright © 1996 Argonaut Technologies Limited

br_fixed_[1s] [su] [£f]

d,br_fixed_ls e, br_fixed 1ls £, br_ fixed 1ls g, br_ fixed_1ls h)

Return the equivalentof a*b + c*d + e*f + g*h
BrFixedSqr (br_fixed_1ls a)
Return the equivalent of a*a.
BrFixedSqr2 (br_fixed 1ls a, br_fixed 1ls b)
+ b*b.
br fixed_1ls b, br_fixed 1ls c)

Return the equivalent of a*a
BrFixedSqr3 (br_fixed 1s a,
+ b*b + c*c.

br_ fixed 1s b, br_fixed 1ls c,

Return the equivalent of a*a
BrFixedSqr4 (br_fixed_ls a,
d)

+ b*b + c*c + d*d

br fixed 1ls b)

Return the equivalent of a*a

BrFixedLength2 (br_fixed 1ls a,

Return the equivalent of sqrt (a*a + b*b).

BrFixedLength3 (br_fixed l1ls a, br_fixed 1ls b, br_ fixed_ 1ls c)
Return the equivalent of sqrt (a*a + b*b + c*c).
BrFixedLength4 (br_fixed 1ls a, br_ fixed 1ls b, br fixed 1ls c,

d)

Return the equivalent of sqrt (a*a + b*b + c*c + d*d).
BrFixedRLength2 (br_fixed 1ls a, br_fixed 1ls b)

Return the equivalentof 1/sqgrt (a*a + b*b) (low precision).
BrFixedRLength3 (br_fixed 1ls a, br_fixed 1ls b, br fixed 1ls c)

Return the equivalentof 1/sgrt (a*a + b*b + c*c) (low precision).

BrFixedRLength4 (br_fixed ls a, br_fixed 1ls b, br_fixed 1s c,
d)

Return the equivalentof 1/sqrt (a*a + b*b + c*c + d*d) (low precision).

BrFixedDiv (br fixed ls a, br_fixed 1ls b)

Return the equivalent of a/b
BrFixedDivF (br_fixed l1ls a, br fixed_ 1ls b)
* 2731,
br_fixed_ 1ls b)

Return the equivalent of a/b
BrFixedDivR (br_ fixed_1ls a,

(rounded towards zero).
br_ fixed 1s b, br_fixed 1ls c)

Return the equivalent of a/b
BrFixedMulDiv (br fixed_ 1ls a,

Return the equivalent of a*b/c.

BrFixedMac2Div (br fixed 1ls a,
d,br_ fixed 1ls e)

br fixed 1ls b, br_fixed 1s c,

Return the equivalent of (a*b + c*d) /e.
BrFixedMac3Div (br fixed l1ls a, br_fixed 1s b, br fixed_1ls c,

133

br_fixed_[1ls] [su] [£f]

br fixed 1ls

br fixed 1ls
br fixed 1ls
br fixed_ls

br fixed 1ls

br fixed 1ls
br fixed 1ls

br fixed_ 1ls
br fixed 1ls

br fixed_ls
br fixed 1ls

br fixed_ls

br fixed_ls

br_angle

br_angle

br_angle

br_angle

br fixed 1ls

br fixed_ls

d,br_fixed_ls e, br_fixed 1ls £, br_fixed 1ls qg)

Return the equivalent of (a*b + c*d + e*f)/q.
BrFixedMac4Div (br_fixed 1ls a, br_ fixed_1ls b, br fixed 1ls c,
d,br_fixed_ls e, br_fixed 1ls f, br_ fixed 1ls g, br_ fixed_ 1ls h,
i)

Return the equivalentof (a*b + c*d + e*f + g*h)/i.

BrFixedRcp (br_fixed 1ls a)

Return the equivalentof 1.0/ a.

BrFixedFMac2 (br_ fixed_1lsf a,
d)

br fixed 1s b, br_fixed_1lsf c,

Return the equivalentof a*b + c*d (a & c are fractions).
BrFixedFMac3 (br fixed_1sf a, br_fixed ls b, br_ fixed_1sf c,
d,br_fixed 1sf e, br fixed 1ls f)

Return the equivalentof a*b + c*d + e*f (a,c & e are fractions).

BrFixedFMac4 (br fixed_ls a, br_fixed l1ls b, br fixed_1s c,
d,br_fixed_ls e, br_fixed 1ls f, br_ fixed 1ls g, br_ fixed_1ls h)

Return the equivalentof a*b + c*d + e*f + g*h (a,c, e, & g are fractions).

BrFixedSin (br_angle a)

Return the equivalent of sin (a) (see br_angle,,).

BrFixedCos (br_angle a)

Return the equivalent of cos (a) (see br_angle,,).

BrFixedASin (br_fixed 1ls s)

Return the equivalent of asin (s) (see br_angle,).

BrFixedACos (br_fixed 1ls c)

Return the equivalent of acos (c) (see br_angle,,).

BrFixedATan2 (br_fixed 1ls x, br_fixed 1s y)

Return the equivalent of atan2 (x,y) (see br_angle,,).

BrFixedATan2Fast (br_fixed 1ls x, br_fixed 1s y)

Return the equivalent of atan2 (a) (low precision) (see br_angle,;).
BrFixedSqrt (br_fixed 1ls a)

Return the equivalent of sqrt (a).
BrFixedPow (br_fixed_1l1ls a, br fixed 1ls b)

Return the equivalent of pow (a, b).

Comparison

All standard comparison operators may be applied between the same types. Comparison with zero is
also valid for all types.

134

Copyright © 1996 Argonaut Technologies Limited

br_fixed_[1s] [su] [£f]

Conversion

From 1

The following macros evaluate to unity in each type, e.g. BR_ONE_LS may be casttobr_fixed ls,,,
and represents unity for that type. However, note that for fractional types, unity can not be stored;
the macro is intended for use as a factor.

BR_ONE_LS

BR_ONE_LSF

BR_ONE_LU

BR_ONE_LUF

BR_ONE_SS

BR_ONE_SSF

BR_ONE_SU

BR_ONE_SUF

From integral types
BrIntToFixed (1)

Converts 1 froma short orunsigned short to a value suitable to cast to
br_fixed_ ls,,,orbr_£fixed_1lu,, respectively.

BrFloatToFixed (f)

Converts £ from an floating point value to a value of type br_scalar,,, (itself
br fixed 1ls,;,)

From Other BRender Types

br fixed_1ls BrScalarToFixed (br_scalar s)

Converts s from scalar type to fixed type.

To integral types
BrFixedToInt (i)

Converts 1 from a value of type br_fixed_1ls,,, orbr_fixed 1lu,,toa value
suitable to cast to a short orunsigned short respectively.

BrFixedToFloat (s)

Converts s from a value of type br_fixed_1ls,,, orbr_fixed 1lu,, toa value
suitable to cast toa float.

To Other BRender Types

br scalar BrFixedToScalar (br fixed_ 1ls f)

Converts £ from fixed type to scalar type.

Copyright © 1996 Argonaut Technologies Limited 1 3 5

br_fixed_[1ls] [su] [£f]

Copy/Assign

Only assign zero, though Fractions may be assigned to non-Fractions of the same type, e.g. ‘1sf to
‘1s. Use conversions in all other cases.

1 3 6 Copyright © 1996 Argonaut Technologies Limited

br_font

br font

The Structure

The font data structure, describing a BRender font. Up to 223 bit mapped characters are supported.
The font does not necessarily need to accord with ASCII character codes, however the non-printing
ASCII codes (0-31 & 127) of the 256 codes possible are reserved for such a purpose.

Three ASCII fonts (covering codes 32-126) are predefined by BRender:
BrFontFixed3x5 3 pixels wide by 5 high, fixed pitch font
BrFontProp4x6 4 pixels wide by 6 high, pixel proportional font
BrFontProp7x9 7 pixels wide by 9 high, pixel proportional font

The typedef

(See brfont.h for precise declaration and ordering)

br_uint_32 flags Properties of the font

br_uint_16 glyph_x Pixel width of fixed pitch characters
br_uint_16 glyph_y Pixel height of characters

br_int_16 spacing_x Horisontal pixel spacing of characters
br_int_16 spacing_y Vertical pixel spacing of characters
br_int_8 * width Pixel widths of proportional characters
br_ uint_16 * encoding Offsets to data for each character
br_uint_8 * glyphs Pointer to bit mapped character data
Related Functions

See BrPixelmapText (), BrPixelmapTextF (), BrPixelmapTextWidth () .,
BrPixelmapTextHeight () ;.

Members

br_uint_32 flags

The £lags member contains various details about the properties of the font such as whether it is
proportional or not.

The presence of the flag whose value is defined by the symbol BR_FONTF_PROPORTIONAL indicates
that the spacing between characters is proportional to their widths (width is used), otherwise each
character is regularly spaced (glyph_x is used).

br_uint_16 glyph_x

The width of characters in fixed pitch fonts. Note that there is an implicit single pixel gap between
characters.

Copyright © 1996 Argonaut Technologies Limited 1 3 7

br_font

br_uint_16 glyph_y

The height of the font in pixels (the number of pixel rows making up the largest character).

br_int_16 spacing_x

The width in pixels between horizontally adjacent character co-ordinates. This is not currently
implemented by BRender, but could be used to determine the spacing between columns of text
when interpreting ASCII HTAB say.

br_int_16 spacing_y

The height in pixels between vertically adjacent character co-ordinates. This is not currently
implemented by BRender, but could be used to determine the spacing of between rows of text when

interpreting ASCIT VTAB or CRLF say.

br int 8 * width

Pointer to an array of 256 widths in pixels of each character (in proportional fonts). Values for ASCII
control codes (0-31 & 127) have reserved meanings. Note that there is an implicit single pixel gap
between characters.

br_uint_16 * encoding

Pointer to an array of 256 offsets to each character’s bit map (values for ASCII control codes (0-31 &
127) have reserved meanings), with a set bit indicating character foreground colour, and a cleared bit
indicating transparent.

Each character is formed of a number of rows of bytes. The number of rows in each character is equal
to glyph_y. The number of bytes in each row is given by the integer formula below, where Width is
the pixel width of the character (glyph_x in the case of fixed pitch fonts and width [char] in the
case of proportional fonts).

Width + 7
8

Therefore, in proportional fonts, it is possible that some characters will have a different number of
bytes per row.

Number of bytes in each row =

The character’s pixels are arranged in memory such that the character’s top left hand corner occupies
the most significant bit of the first byte. Naturally a character row may use fewer pixels than all of the
bits of the bytes it occupies, in such a case the least significant bits of the last byte of each row will
be unused. For example, say the ASCII letter ‘E’ was stored in a font called my_font asa 10x18
character. It would be stored in 18 pairs of bytes (36 bytes) at an address pointed to by
my_font.glyphs+my_font.encoding[‘E’]. The first byte would contain the pixels for the left
hand 8 dots of the top row. The second byte’s two most significant bits would contain the remaining
two dots of the top row. Subsequent bytes would contain pixels for lower rows in a similar fashion.

1 3 8 Copyright © 1996 Argonaut Technologies Limited

br_font

br_uint_8 * glyphs

Pointer to raw font data containing bit maps for each character. In proportional fonts the first byte
should not be used for character data so that an encoding offset of zero can be considered NULL.
For the same purpose, in fixed pitch fonts, there should be a dummy character definition at an
encoding offset of zero. Note that the space character should not use this definition, but have its
own (therefore at a non-zero offset’).

Copy/Assign

May be freely copied. However, be careful of a structure assignment if the lifetime of the original font
data is unknown.

Given that font data can be arranged in a convoluted manner, there is not necessarily a single most
efficient way of copying it. One way to copy font data is to first determine the extent of the data by
scanning the list of offsets and obtaining the maximum extent of each character’s data (including the
character’s width). Another way is to copy font data character by character.

Access & Maintenance

The font and its data are not guaranteed to be writable, but otherwise members may be freely
accessed (although this should be avoided during text operations). Do not modify the supplied fonts
(though their data may be copied and subsequently modified if desired).

Referencing & Lifetime

The font should be maintained while references to it exist.

Initialisation

Initialise the entire structure to zero (using memset (, 0, sizeof (br_font)), say) and ensure all
the above members are set appropriately. The elements of width and encoding corresponding to
ASCII control codes (0-31 & 127) should be set to zero. All of the remaining 223 elements must have
valid values. Character data can be stored in any order, may overlap and need not be contiguous. In
proportional fonts, codes for which no character is defined should have a width of zero and a zero
encoding offset. In fixed pitch fonts, codes for which no character is defined should have a zero
encoding offset (therefore a dummy character definition is required at an offset of zero).

Import & Export

There are no specific font load/save functions. See Filing System Support for details of BRender
functions that could be used to assist font import and export.

Do not be beguiled by the apparent simplicity of storing fonts within monochrome pixel maps. There
are a few points at which this idea has difficulties. For instance, a monochrome pixel map may require

* Given that overlap is permitted, only the first byte is ‘wasted’ as the space definition can have an offset of 1.

Copyright © 1996 Argonaut Technologies Limited 1 3 9

br_font

4 byte alignment of pixel rows, whereas a font requires single byte alignment. Also, with proportional
fonts, characters may not necessarily all have the same number of bytes per row, so it may not be
possible to fit them all into a neat column.

1 40 Copyright © 1996 Argonaut Technologies Limited

br_fraction

br fraction

The Integral Type

The br_£raction,, type can be used to represent numbers in the range [-1,+1)". Although used
internally, this type is not currently used by the BRender API.

Under the floating point library, br_fraction,, is a f1loat. Under the fixed point library,
br_fraction,, is a 16 bit signed fixed point number.

The typedef

(See scalar.h for precise declaration)

float br_fraction Floating point Signed Fraction
br_fixed 1lsf br_fraction Fixed — Long Signed Fraction(0.15)
Arithmetic

No standard operators are supported. Moreover, there are few macros that directly support fractional
arithmetic. Convert to br_scalar,,, and use that type’s arithmetic macros instead.

The following macros are provided to assist with fractional vector arithmetic (see br_£fraction,,,).
In the following macros, arguments a, ¢, e and g are of type br_fraction,,, b,d, £ andh are of
type br_scalar,,,. The macro computes a br_scalar,,, result.

BR_FMAC2 (a, b, c,d)

Return the equivalentof a * b + ¢ * d .
BR_FMAC3(a,b,c,d, e, f)

Return the equivalentof a * b + ¢ * d + e * £ .
BR_FMAC4(a,b,c,d, e, f,g,h)

Return the equivalentof a * b + ¢ * d + e * £ + g * h .

Comparison

Equality and comparison with zero are valid. Other standard comparison operators may be
implemented by macros in future versions, but are currently valid.

Conversion

From Numeric Constants
BR_FRACTION (x)

Convert x from any numeric constant to br_fraction,,,.

* Maximum value is thus BR_ONE_LS-BR_SCALAR_EPSTILON (in the fixed point library).

Copyright © 1996 Argonaut Technologies Limited 1 4 1

br_fraction

BR_SCALAR_EPSILON

Smallest positive fractional value.

From Integral Types

To convert from integral types, use br_scalar,,, as an intermediary.

Frombr_scalar,,
br fraction BrScalarToFraction (br_ scalar s)

Converts s frombr_scalar,,,tobr_fraction,,. [tis up to the application to
ensure the value is in the required range.

To Integral Types

To convert to integral types, use br_scalar,,, as an intermediary.

Tobr_scalar,,
br_ scalar BrFractionToScalar (br_fraction f£f)

Converts s frombr_fraction,, tobr_scalar,,. [tis up to the application to
ensure the value is in the required range.

Copy/Assign

Only assign zero, or fractions. Use conversions in all other cases.

1 4 2 Copyright © 1996 Argonaut Technologies Limited

br_fvector?2

br fvector2

The Structure

This is the two ordinate, fractional vector structure. It is not recommended for use, and is only
documented here for completeness.

The typedef

(See vector.h for precise declaration and ordering)

br_fraction v[2] Ordinates (0=x, 1=y)
Members

br_fraction vI[2]

First and second ordinate. Conventionally, the first ordinate is the x axis component, and the second,
the y axis component.

Arithmetic

No approved arithmetic.

Copy/Assign

No approved assignment.

Initialisation

The following macro may be used as a static initialiser.

BR_FVECTOR2 (a, b)

Macro expands to {BR_FRACTION (a), BR_FRACTION (b) }.

All other initialisation should use member-wise initialisers.

Copyright © 1996 Argonaut Technologies Limited 1 4 3

br_fvector3

br fvector3

The Structure

This is the three ordinate fractional vector structure, typically used for storing surface normals. It is
not intended for use by the application and is documented here only for completeness.

The typedef

(See vector.h for precise declaration and ordering)

br_fraction v[3] Ordinates (0=x, 1=y, 2=g3)
Related Structures

See br_vector3,,,.

This structure is currently used by br_vertex;,, and br_face,,,. [t’s presence must not be relied
upon.

Members

br fraction v[3]

First, second and third ordinate. Conventionally, the first ordinate is the x-axis component, the
second, the y axis component, and the third, the z axis component.

Arithmetic

No approved arithmetic.

Copy/Assign

No approved assignment.

Initialisation

The following macro may be used as a static initialiser.

BR_FVECTOR3 (a, b, c)

Macro expands to {BR_FRACTION(a), BR_FRACTION(b), BR_FRACTION(C)}.

All other initialisation should use member-wise initialisers.

1 4 4 Copyright © 1996 Argonaut Technologies Limited

br_fvector4d

br fwvector4

The Structure

This is the four ordinate fractional vector structure. It is not intended for use by the application and
is documented here only for completeness.

The typedef

(See vector.h for precise declaration and ordering)

br_fraction v[4] Ordinates (0=x, 1=y, 2=3, 3=w)
Related Structures

See br_vector4,,.

Members

br_fraction vI[4]

First, second, third, and fourth ordinate.

Arithmetic

No approved arithmetic.

Copy/Assign

No approved assignment.

Initialisation

The following macro may be used as a static initialiser.

BR_FVECTORA (a, b, c, d)

Macro expands to {BR_FRACTION(a), BR_FRACTION(b), BR_FRACTION(C),
BR_FRACTION(d)}.

All other initialisation should use member-wise initialisers.

Copyright © 1996 Argonaut Technologies Limited 1 4 5

br_int_8/16/32

br int 8/16/32

The Integral Type

BRender’s signed integer types. Use this type where the integer word length is critical.

The typedef

(See compiler.h for precise declaration)

signed char br_int_8 8 bit signed integer
signed short br_int_16 16 bit signed integer
signed long br_int_32 32 bit signed integer
Arithmetic

All standard C arithmetic operators are valid as with standard integer types.

Comparison

All standard C comparison operators are valid as with standard integer types.

Conversion

Use casts as with any other standard C type.

Copy/Assign

Freely assign. Use as a standard C type, as this type is only concerned with ensuring specific sizes —
not representation.

1 4 6 Copyright © 1996 Argonaut Technologies Limited

br_light

br light

The Structure

This structure is used to specify the properties of light actors. See Light Actors.

The typedef

(See 1ight.h for precise declaration and ordering)

Behaviour

br_uint_8 type Light type

br_colour colour Light colour

Attenuation

br_scalar attenuation_c Light intensity

br_scalar attenuation_1 Linear attenuation factor for point and spot lights

br_scalar attenuation_g Quadratic attenuation factor for point and spot lights

Spot Lighting

br_angle cone_inner The angle giving the cone of full-intensity light castby a
spot

br_angle cone_outer The angle giving the cone of illumination of a spot

Supplementary

char * identifier Light name

void * user User data (application dependent)

Related Functions

Scene Modelling

See BrLightEnable (), and BrLightDisable ().

Copyright © 1996 Argonaut Technologies Limited 1 4 7

br_light

Members
Behaviour

br_uint_8 type

This member defines the type of the light. Note that different light types can affect rendering
performance in different ways. Pre-lighting textures is the fastest means of lighting objects in a scene,
ambient lighting comes next, then the three active lighting methods: direct, point and spot lights (in
order of increasing processing requirements). The more lights in a scene’, the more computation
required.

The three active light types are described in the following table:

Light Type Behaviour
Symbol

BR_LIGHT_DIRECT |[A directed light source. The light is infinitely distant and shines along the negative z axis of the
light actor.

BR_LIGHT_POINT |[A point light source, radiating in all directions.

BR_LIGHT_SPOT A spot light, with both spatial location and direction. A spot light has a cone of illumination and
shines along the negative z axis of the light actor.

The type member also encodes a flag value BR_LIGHT_VIEW which can be combined with any of the
three light types using the ‘inclusive-or’ operation.When the flag is present, lighting calculations are
performed in view space rather than model space. This is slower, but prevents odd anomalies if non-
uniform scalings are used on models.

The bit mask value BR_LIGHT_TYPE can be used to extract the light type using the ‘and’ operation.

br colour colour

If the rendering engine supports it, a light may be of a specific colour. Typically supported when
rendering in ‘true colour’.

Attenuation

The linear and quadratic attenuation factors determine the degree by which light intensity falls off
with respect to distance and squared distance from the light source. If d is distance, and A, A, A are
the constant, linear and quadratic attenuation factors, then light intensity L is given by:

1
L o< 5
A +Ad+Ad

If a light actor is created with a default specification, the default values supplied for A, A, A, are 1.0,
0.0 and 0.0 respectively.

* The maximum number of enabled light actors in a scene is defined by the symbol BR_MAX LIGHTS.

1 4 8 Copyright © 1996 Argonaut Technologies Limited

br_light

br scalar attenuation_c

Constant attenuation component. Light intensity is inversely proportional to this value.

br scalar attenuation_l1

Linear attenuation factor. Light intensity is inversely proportional to distance factored by this value.
It only applies to point and spot lights.

br_scalar attenuation_g

Quadratic attenuation factor. Light intensity is inversely proportional to distance factored by the
square of this value. It only applies to point and spot lights.

Spot Lighting

Spot lights are defined in terms of an inner, fully lit cone of light and an outer, penumbral cone of
light diminishing from fully lit to unlit. The intensity fall off between the inner and outer cones is
linear.

The effect of having the outer cone angle smaller than the inner cone angle is undefined.

br_angle cone_inner

The inner cone of a spot light is defined by the angle between the cone’s axis and its circumference.
This represents the region within which surfaces will be fully lit (subject to attenuation).

br_angle cone_outer

The outer cone of a spot light is defined by the angle between the cone’s axis and its circumference.
This represents the region within which surfaces will be partially lit (subject to attenuation). The
light level falls off linearly from the fully lit level at the inner cone to zero at the limit of the outer
cone.

Supplementary

char * identifier

Pointer to unique, zero terminated, character string (or NULL if not required).

If identifier isset by BrActorLoad(),, or BrActorLoadMany (),, it will have been constructed
using BrResStrDup () .

void * user

This member may be used by the application for its own purposes. It is initialised to NULL upon
allocation (if allocated by BRender), and not accessed by BRender thereafter.

Copyright © 1996 Argonaut Technologies Limited 1 49

br_light

Copy/Assign

The light may be freely copied.

Access & Maintenance

Lights can be modified at any time, though changes will not have any effect unless the light is
enabled (see BrLightEnable () ;). The members should always accord with the light type.

Referencing & Lifetime

If not constructed by BrActorAllocate (), it may be multiply referenced (given a sufficient
lifetime). The light structure should be maintained at least as long as it is referenced by any actor.

Initialisation

Only members applicable to the light type need be initialised.

E.g. BrActorAllocate (BR_ACTOR_LIGHT, NULL) currently initialises a br_1ight,,, structure
as follows (after performing memset (, 0, sizeof (br_light))):

br_light* light;

light->type=BR_LIGHT_DIRECT;
light—->colour=BR_COLOUR_RGB (255,255, 255) ;
light->attenuation_c=BR_SCALAR(1.0);

Construction & Destruction

The light structure can either be constructed/destroyed by the application, or by supplying NULL to
BrActorAllocate ().

Supplementary

Lights created by BrActorAllocate (), are allocated from the BR_MEMORY_LIGHT (“LIGHT")
resource class, and hence can benefit from the resource class supplementary functions.

Import & Export

Lights are imported and exported with actors that specify them. See BrActorLoad (), and
BrActorSave ().

1 5 O Copyright © 1996 Argonaut Technologies Limited

br_light

Platform Specific

Some platforms directly support some types of light in hardware, though there is often a significant
limit upon how many lights of each type are supported (also see BR_MAX_LIGHTS).

Copyright © 1996 Argonaut Technologies Limited 1 5 1

br_map_enum_cbfn

br map_enum cbfn

The Call-Back Function

This type defines a function, supplied to BrMapEnum () ,,, and to be called by it for a selection of
maps.

The typedef

(See fwproto.h fora precise declaration)

br_uint_32 br_map_enum_cbfn (br_pixelmap*, void*) Enumerator
Specification

CBFnMapEnum ()

Description: ~ An application defined call-back function accepting a pixel map and an application
supplied argument (as supplied to BrMapEnum () ,,,).

Declaration: br_uint_32 BR_CALLBACK CBFnMapEnum(br_pixelmap* map,
void* arg)
Arguments: br_pixelmap * map
One of the maps selected by BrMapEnum () ,,.
void * arg
The argument supplied to BrMapEnum () 5.
Preconditions: ~ BRender has completed initialisation.
Effects: Application defined. Avoid adding or removing maps within this function.
Result: br_uint_ 32
Any non-zero value will terminate the enumeration and be returned by
BrMapEnum () ,,. Return zero to continue the enumeration.

See Also: BrMapEnum () ,,, BrMapFind () ;.

1 5 2 Copyright © 1996 Argonaut Technologies Limited

br_map_find_cbfn

br map_find cbfn

The Call-Back Function

This type defines a function, registered with BrMapFindHook () s, to be called when
BrMapFind () ,; or BrMapFindMany (), fail to find any map.

The typedef

(See fwproto.h fora precise declaration)

br_pixelmap* br_map_find_cbfn (const char*)Find (whenBrMapFind () fails)
Specification

CBFnMapFind ()

Description: An application defined call-back function used when BxrMapFind () ,; or
BrMapFindMany (), fail.

Declaration: br_pixelmap* BR_CALLBACK CBFnMapFind(const char* name)
Arguments: const char * name
The search pattern supplied to BrMapFind () ,s or BrMapFindMany (), that did
not match any map.

Preconditions: ~ BRender has completed initialisation. No map has an identifier that successfully
matches the search pattern.

Effects: Application defined.
Result: br_pixelmap *

Either return an existing map that is deemed appropriate for the search pattern, or
NULL if there isn’t one. This value will be returned by BrMapFind () ,s or
BrMapFindMany () .

Remarks: This could either be used to supply a default map or to create a map. If maps were
created on demand, then this function could search another list of available maps
(but not yet created) and see if the pattern matched any of them, if it did, one of
them could be registered and returned. Note that there is no way to supply more
than one map.

See Also: BrMapFind () ,s, BrMapFindMany () ,,s, BrMapFindHook () s,
BrMapFindFailedLoad () .

Copyright © 1996 Argonaut Technologies Limited 1 5 3

br_material

br material

The Structure

A structure describing the appearance of a material that can be applied to a surface.

The typedef

(See material.h for precise declaration and ordering)

Behaviour
br_uint_32

Lighting
br_ufraction
br_ufraction
br_ufraction
br_scalar

Colour
br_colour
br_uint_8
br_uint_8
br_pixelmap *
br_pixelmap *

Texture
br_pixelmap *
br matrix23

Supplementary
char *
void *

Related Functions

Scene Modelling

flags

kd
ks
power

colour
index_base
index_range
index_shade
index_blend

colour_map
map_transform

identifier
user

Flags determining how this material is rendered

The ambient lighting contribution

The directional lighting contribution

The specular lighting contribution

Specular power — the ‘spread’ of a specular highlight

Material colour, when rendering in ‘true’ colour

The unlit index (or row of a shade table)

The range to the fully lit index (or row of a shade table)
A shade table (for indexed textures only)

A blend table (for indexed textures only)

An optional pixel map based texture
Transform to apply to texture map

Material name
User data (application dependent)

See BrEnvironmentSet (), BrModelApplyMap () ,;;, BrModelFitMap () 5.

Scene Rendering

See BrZbModelRender () .

154

Copyright © 1996 Argonaut Technologies Limited

Related Structures

Scene Modelling

br_material

See br_actor,, br_model,,,, br_face,,;, br_vertex,,.

Scene Rendering

See br_renderbounds_cbfn,,, br model_ custom_cbfn,,,.

Members

Behaviour

br_uint_32 flags

This member determines how faces using the material are rendered, in terms of other members and

aspects of the scene.

Flag Symbol

Behaviour

BR_MATF_LIGHT

The material is lit — affected by lights in the scene

BR_MATF_PRELIT

The material is pre-lit — colours are taken directly from models’ vertex structures (see
br_vertex;,). Any lights are ignored.

BR_MATF_SMOOTH

Any lighting is applied using Gouraud shading. Lighting levels are linearly interpolated
between vertices. Otherwise, the same lighting level is used across the face

BR_MATF_DITHER

Effectively applies a filter to the texture map to soften transitions between texels — most
noticeable when a texel covers several screen pixels. A carefully chosen noise
component is added to the u,v texel co-ordinates (a comparable effect to bilinear
interpolation). Note that transparent pixels will also be dithered.

BR_MATF_ENVIRONMENT_T

Texels are calculated by casting a ray from the viewpoint (extended to infinity) and
reflecting it off the face, out to an enclosing sphere (onto which the supplied texture has
been mapped)

BR_MATF_ENVIRONMENT_L

Texels are calculated by casting a ray from the (local) viewpoint and reflecting it off the
face, out to an enclosing sphere (onto which the supplied texture has been mapped)

BR_MATF_PERSPECTIVE

The texture is rendered with correct perspective (as opposed to using linear
interpolation)

BR_MATF_DECAL

Both the texture mapped and non-texture mapped materials are drawn, the non-texture
mapped material only appearing beneath what would have been transparent elements
of the texture map.

For example, this could be used to add symbols or logos to a smooth shaded model

BR_MATF_BLEND

The blend table is utilised (only for indexed textures) (see index_blend)

BR_MATF_ALWAYS_VISIBLE

Faces using the material will always be visible, and so back-face culling need not be
performed for such faces

BR_MATF_TWO_SIDED

The material has two sides, and lighting calculations are performed for both of them

BR_MATF_FORCE_FRONT

The material is forced to be in front of all other materials

Copyright © 1996 Argonaut Technologies Limited

155

br_material

The effects of various combinations of the first three flags are not particularly obvious so are
described in the following table. The Texture column indicates whether the material is effectively
textured. The Colour column indicates whether the pixel map rendered to is indexed or ‘true’ colour
(it is assumed that any texture shares this property). The ‘Pixels Set To’ column describes how each
pixel of a face using the material is set. Note that ‘texel’ is the term used to refer to the element of
the texture map corresponding to a particular screen pixel.

No | Textur | Colour | PRELIT | LIGHT | SMOOTH [Pixels Set To

. e

1 X “True’ X _ colour

2 X “True’ X v X colour, uniformly illuminated by average face lighting

3 x “True’ x v v colour, illuminated by linearly interpolated lighting
between vertices

4 X “True’ v — X Average prelit vertex colour

5 x “True’ v _ v Linearly interpolated between vertex prelit colours

6 x Indexed x x _ index_base

7 X Indexed x v x index_base + index_range X (average face
lighting)

8 X Indexed X v v index_base + index_range X(linearly interpolated
lighting between vertices)

9 X Indexed v _ x index_base + index_range X (average vertex prelit
index + 256)

10 x Indexed v _ v index_base + index_range X (linear interpolation
between vertex prelit indices + 256)

11 v “True’ x x _ Texel

12 v “True’ v X Texel uniformly illuminated by average face lighting

13 v “True’ x v v Texel illuminated by linearly interpolated lighting
between vertices

14 v “True’ v _ x Texel illuminated by average prelit vertex colour

15 v “True’ v _ v Texel illuminated by colour linearly interpolated
between vertex prelit colours

16 v Indexed x x _ Texel

17 v Indexed X X Shade table: column [texel], row[index_base +
index_range X (average face lighting)]

18 v Indexed x v Shade table: column [texel], row[index_base +
index_range X (linearly interpolated lighting between
vertices)]

19 Indexed _ x Shade table: column [texel], row[index_base +
index_range X (average vertex prelit index)]

20 Indexed _ v Shade table: column [texel], row[index_base +

index_range X (linear interpolation between vertex
prelit indices)]

Table showing effects of different combinations of material lighting flags

156

Copyright © 1996 Argonaut Technologies Limited

br_material

Lighting

When a material is lit (BR_MATF_LIGHT is set, but not BR_MATF_PRELIT) a lighting calculation is
performed to calculate the light reaching the viewer. This will depend upon the face’s orientation
with respect to the viewer and the light sources.

The following formula” shows how the lighting A of a face depends upon 6, the angle at the face
between the light source and the face normal, and ¢, the angle at the face between the viewer and
the reflected light ray. Note that with high k values it is apparently possible for A to be as large as 3,
however A is clamped to the range [0,1).

p
}\’ = kambient + kdlffuse cosO + k COoSs q)

specular

The other four variables in the equation are listed respectively, below.

br ufraction ka

The ambient lighting contribution for lit materials. This is the amount of light assumed to be
reflected from other objects and lighting in general, i.e. not from light actors. This means that even
in a scene with all lights disabled, a lit material will still be visible if it has a non-zero ambient lighting
contribution.

Zero can produce a material whose illumination is highly dependent upon light sources, whereas
higher values can give ever fluorescent or luminous effects.

A typical sunny scene might have most materials with a significant ambient contribution, whereas a
dusk scene might have a much lower one, and a moonlit one, probably zero.

br ufraction kd

The diffuse lighting contribution for lit materials. This determines how much of the reflected light
is made up of the component dependent upon the angle of the face to the direction of the light
illuminating it. The closer the face comes to being perpendicular to the light source, the more light
the face receives, and thus the more diffuse light that can be reflected.

Zero can give a shiny surface, whereas higher values can give surfaces a more matt appearance.

br ufraction ks

The specular lighting contribution for this lit materials. This determines how much reflected light is
made up of the component dependent upon the angle between the reflected light source and the
direction of viewer (naturally, if the angle is zero, the component will be at its maximum).

The greater the value, the more visible highlights will be.

br_scalar power

This member applies a power to the specular lighting contribution.

* An approximation to the formula may be used on some platforms, particularly with respect to the specular term.

Copyright © 1996 Argonaut Technologies Limited 1 5 7

br_material

The greater the value, the sharper any highlights will be. A typical value is 20.
Colour

br colour colour

When rendering in ‘true’ colour, the value of this member is taken as the basic colour of the face,
which may of course be affected by lighting (if BR_MATF_LIGHT is set, but not BR_MATF_PRELIT).

br uint_ 8 index base

When rendering in indexed colour, this member determines the lower value of the index range used
to colour a face. When lit, the light level is factored with index_range to obtain an index between
index_base and index_base+index_range-1. Without lighting, index_base is used to set
every pixel of the face.

This member only applies to materials without textures - with textures, this member is ignored.

br_uint_8 index_range

When rendering in indexed colour, this member determines the number of index values that can be
selected with a given lighting level, starting at index_base.

This member only applies to materials without textures - with textures, this member is ignored.

br_pixelmap * index_shade

Materials with indexed colour texture maps can only be lit if they are accompanied by an appropriate
shade table. The shade table is simply a way of tabulating the output pixel given a particular texel
and a particular lighting level. The texel generally indexes the column and the lighting level, the row.
The shade table must therefore have the full complement of columns necessary for the pixel size of
the texture map. The shade table may have any number of rows, as the lighting level directly selects
the row.

1 5 8 Copyright © 1996 Argonaut Technologies Limited

br_material

Thus an 8 bit indexed colour texture map requires a shade table with 256 columns and two or more
rows (one being redundant). A selection of shade table types for use with 8 bit textures are described
below.

BR_PMT_INDEX_ 8 shade table to BR_PMT_INDEX_ 8 output

The shade table converts 8 bit texels into 8 bit lit pixel values, by using the pixel
in the shade table at the column given by the texel and the row given by the
monochrome lighting level.

BR_PMT_RGB_555 shade table to BR_PMT_RGB_555 output

The shade table converts 8 bit texels into 15 bit lit pixel values, by using the pixel
in the shade table at the column given by the texel and the row given by the
monochrome lighting level.

BR_PMT_RGBX_888 shade table to BR_PMT_INDEX_8 output

The shade table converts 8 bit texels into 8 bit lit pixel values, by using a single 256
column wide table, but with 24 bit colour values in order that true colour lighting
can be applied. The red and green components of each value are actually column
indices used to obtain a blue component which is produced as the output pixel.
The table is thus read three times.
1. X1=Red component of pixel in shade table at column(Texel), row(Red

light level)
2. X2=Green component of pixel in shade table at column(X1), row(Green

light level)
3. X3=Blue component of pixel in shade table at column(X2), row(Blue

light level)
4. Ouput pixel is X3

br_pixelmap * index_blend

Blending is a way of making the destination pixel depend upon the existing contents of the output
buffer. The blend table like the shade table tabulates the output pixel given a particular texel and
the pixel already in the output buffer. The texel indexes the column and the existing output pixel
the row. The shade table must therefore have the full complement of rows as well as columns
necessary for the pixel size of the texture map.

Thus an 8 bit indexed colour texture map blend table needs 256 columns and 256 rows. The blend
table is only used if BR_MATF_BLEND is set, and if set this member should not be NULL.

Given that the blend table tabulates an output for every possible pair of input pixels, any function
can be represented, e.g. exclusive-or, inverse, inclusive-or, mask, average, etc.

The blend table is typically used for translucence effects, e.g. ghosts, flames, frosted glass, etc.

Note that in the case of the depth buffer renderer, while the output pixel will only be written if it is
nearer than the existing pixel, it will never modify the depth buffer value. This is because it is
assumed to be an intangible surface. Therefore, it may be necessary to render such materials in a
separate stage.

Copyright © 1996 Argonaut Technologies Limited 1 5 9

br_material

Note that if both a blend table and shade table is used (the material has an indexed texture which is
lit and blended), the shade table is applied first, followed by the blend table.

Blend tables, as with shade tables, also need to be added to the registry before use.

Texture

br_pixelmap * colour_map

A pointer to a pixel map containing a pattern with which to cover faces using this material.

Pixels that are zero in the pixel map are not further processed for colour information, and are
effectively transparent. A face is not rendered where such pixels appear on its surface, nor are any
corresponding values written to any depth buffer. Note though, that a 2D pick function will still pick
a transparent face. For more sophisticated transparency effects see the description of index_blend
above.

Note that indexed colour textures must also have a corresponding shade table.

br_matrix23 map_transform

The transform to apply to texture co-ordinates. This enables textures to be rotated, scaled, sheared,
and translated. Moreover, this transform can be continuously modified, thus providing animated
texture effects.

See BrModelApplyMap (), for details of how texture maps can be applied to a model’s faces.

Supplementary

char * identifier

Pointer to unique, zero terminated, character string (or NULL if not required). Can be used as a handle
to retrieve a pointer to the material. Not intended for intensive use. Typically used to collect pointers
to materials loaded using BrMaterialLoad () and added to the registry using
BrMaterialAdd () . Also ideal for diagnostic purposes.

A non-unique string can be supplied, but which of a set of materials having the same string will be
matched by search functions (See BrMaterialFind () ;), is undefined. Also in consideration of
searching, it is not recommended that non-alphabetic characters are used, especially Slash (°/’),
Asterisk (‘*’), and Query (‘?’), which are used for pattern matching.

This member can be modified by the programmer at any time.

If identifier is set by BrMaterialLoad () or BrMaterialLoadMany (), it will have been
constructed using BrResStrDup () s.

1 60 Copyright © 1996 Argonaut Technologies Limited

volid* user

br_material

This member may be used by the application for its own purposes. It is initialised to NULL upon
allocation, and not accessed by BRender thereafter.

Copy/Assign

The br_material,, structure should not be copied directly, e.g. by structure assignment. If a
similar material is required, a new one should be allocated and pertinent members copied
individually. Care may be needed in copying identifier.

Access & Maintenance

Materials must be ad

ded to the registry if they are involved in rendering a scene. They should not be

modified during rendering,

Materials that have been added to the registry may be accessed by BRender during rendering,.

If any changes are m

ade to materials involved in rendering, they must be updated before the next

rendering in which they are involved.

BrMaterialAdd()

Description:

Declaration:

Arguments:

Result:

See Also:

Add a material to the registry, updating it as necessary. All materials must be added
to the registry before they are subsequently involved in rendering.

br material* BrMaterialAdd (br_material* material)
br material * material

A pointer to a material.

br material *

Returns a pointer to the added item, else NULL if unsuccessful.

BrMaterialUpdate (), BrMaterialAddMany () ,, BrMaterialLoad () g,
BrMaterialFind () ;, BrMaterialRemove () .

BrMaterialAddMany ()

Description:

Declaration:

Arguments:

Add a number of materials to the registry, updating them as necessary.

br_uint_32 BrMaterialAddMany (br_material* const* materials,
int n)

br _material * const * materials
A pointer to an array of pointers to materials.
int n

Number of materials to add to the registry.

Copyright © 1996 Argonaut Technologies Limited 1 6 1

br_material

Result:

See Also:

br uint_32

Returns the number of materials added successfully.

BrMaterialUpdate () ,, BrMaterialAdd (), BrMaterialRemove (),
BrMaterialRemoveMany () s

BrMaterialUpdate ()

Description:

Declaration:

Arguments:

Update a material that has changed in some respect since the previous update of
this material (or BrMaterialAdd ()).

void BrMaterialUpdate (br_material* material,

br_uint_16 flags)

br material * material

A pointer to a material.
br_uint_16 flags

Item update flags. In general, BR_MATU_ALL should be used. However, the
following table describes when to use more specific update flags. Note that flags
can be combined using the ‘Or’ operation (BR_MATU_ALL is such a combination
of the other flags, for your convenience).

Flag

To Be Used When

BR_MATU_MAP_TRANSFORM

The map_transform has been changed

BR_MATU_RENDERING

The £lags member has been changed.

BR_MATU_LIGHTING

Lighting or Colour parameters have been changed.

BR_MATU_COLOURMAP

Elements of the texture at colour_map have been changed

BR_MATU_ALL

The change is unknown or wholesale. This includes the case when
an entirely different texture map is being used, i.e. colour_map is
set to a different pointer

See Also:

BrMaterialAdd () .

BrMaterialRemove ()

Description:
Declaration:
Arguments:

Result:

See Also:

162

Remove a material from the registry.

br_material* BrMaterialRemove (br_material* material)

br material * material

A pointer to a material.

br_material *

Returns a pointer to the item removed.

BrMaterialAdd ()

Copyright © 1996 Argonaut Technologies Limited

br_material

BrMaterialRemoveMany ()

Description: Remove a number of materials from the registry.

Declaration: br_uint_32
BrMaterialRemoveMany (br_material* const* materials, int n)

Arguments: br_material * materials
A pointer to an array of pointers materials.
int n
Number of materials to remove from the registry.
Result: br_uint_32
Returns the number of items removed successfully.

See Also: BrMaterialAddMany ()

Referencing & Lifetime

Materials may be multiply referenced. The texture map and any shade table may be referenced by
more than one material as long as their lifetimes are longer than the materials that refer to them.
Materials must have been added to the registry if they will be involved in rendering. The material
must be maintained while it is in the registry or being referenced.

Initialisation

The material is automatically initialised to zero by BrMaterialAllocate () ;. Members should
then be set appropriately. Re-initialisation is not recommended — destroy and reconstruct.

Construction & Destruction

Apart from import and platform specific functions, materials should only be constructed by the
following BRender function. Destruction should naturally be performed by the corresponding ‘free’
function, usually BrMaterialFree () . Note that a material should be removed from the registry
before being destroyed.

BrMaterialAllocate ()

Description: ~ Allocate a new material.
Declaration: br_material* BrMaterialAllocate (const char* name)
Arguments: const char * name

String to initialise the identifier member to.

Copyright © 1996 Argonaut Technologies Limited 1 63

br_material

Result:

br material *

Returns a pointer to the new material, or NULL if unsuccessful.

BrMaterialFree ()

Description: Deallocate a material and any associated memory.
Declaration: void BrMaterialFree (br_material* m)
Arguments: br_material * m
A pointer to a material.
Supplementary

BrMaterialCount ()

Description:

Declaration:

Arguments:

Result:

See Also:

Count the number of registered materials whose names match a given search
pattern. The search pattern can include the standard wild cards “*’ and ‘?’.

br_uint_32 BrMaterialCount (const char* pattern)
const char * pattern

Search pattern.

br uint_32

Returns the number of items matching the search pattern.

BrMaterialEnum() , BrMaterialFind ()

BrMaterialEnum/()

Description:

Declaration:

164

Calls a call-back function for every material in the registry matching a given search
pattern. The call-back is passed a pointer to each matching material, and its second
argument is an optional pointer supplied by the user. The search pattern can
include the standard wild cards ‘*’ and ‘?’. The call-back itself returns a
br_uint_32,,value. The enumeration will halt at any stage if the return value is
non-zero.

br_uint_32 BrMaterialEnum(const char* pattern,
br _material_enum_cbfn* callback, void* arg)

Copyright © 1996 Argonaut Technologies Limited

Arguments:

Result:

Example:

br_material

const char * pattern

Search pattern.

br material enum cbfn * callback

A pointer to a call-back function.

void * arg

An optional argument to pass to the call-back function.
br_uint_32

Returns the first non-zero call-back return value, or zero if all matching items are
enumerated.

br_uint_32 BR_CALLBACK test_callback (br_material* material, void*

{

{

arg)
br_uint_32 count;

return (count) ;

br_uint_32 enum;

enum = BrMaterialEnum(“material”, &test_callback,NULL) ;

BrMaterialFind()

Description:

Declaration:

Arguments:

Result:

See Also:

Find a material in the registry by name. A call-back function can be setup to be
called if the search is unsuccessful. The search pattern can include the standard
wild cards “*’ and 7.

br_material* BrMaterialFind(const char* pattern)
const char * pattern

Search pattern.

br material *

Returns a pointer to the material if found, otherwise NULL. If a call-back exists and
is called, the call-back’s return value is returned.

BrMaterialFindHook (), BrMaterialFindMany ()

BrMaterialFindMany ()

Description:

Find a number of materials in the registry by name. The search pattern can include
the standard wild cards “*’” and ?’.

Copyright © 1996 Argonaut Technologies Limited 1 6 5

br_material

Declaration:

Arguments:

Result:

See Also:

br_uint_32 BrMaterialFindMany (const char* pattern,
br material** materials, int max)

const char * pattern

Search pattern.

br material ** materials

A pointer to an array of pointers to materials.
int max

Maximum number of materials to find.

br uint_32

Returns the number of materials found. The pointer array is filled with pointers to
the found materials.

BrMaterialFind() ;, BrMaterialFindHook ()

BrMaterialFindHook ()

Description:

Declaration:

Arguments:

Effects:

Result:

Example:

Functions to set up a call-back.

br_material_ find_cbfn¥*
BrMaterialFindHook (br_material_ find cbfn* hook)

br_material_ find_cbfn * hook
A pointer to a call-back function.

If BrMaterialFind () ; is unsuccessful and a call-back has been set up, the call-
back is passed the search pattern as its only argument. The call-back should then
return a pointer to a substitute or default item.

For example, a call-back could be set up to return a default material if the desired
material cannot be found in the registry.

The function BrMaterialFindFailedLoad () is provided and will probably
be sufficient in many cases.
br _material_ find_cbfn *

Returns a pointer to the old call-back function.

br_material BR_CALLBACK * test_callback (const char* pattern)

{

166

br_material* default_material;

return (default_material);

br_material* material;

BrMaterialFindHook (&test_callback);

material = BrMaterialFind(“non_existent_material”);

Copyright © 1996 Argonaut Technologies Limited

See Also:

br_material

BrMaterialFindFailedLoad()

BrMaterialFindFailedLoad()

Description:

Declaration:

Arguments:

Effects:

Result:

Example:

"This function is provided as a suitable function to supply to
BrMaterialFindHook () 4.

br material* BrMaterialFindFailedLoad (const char* name)
const char * name
The name supplied to BrMaterialFind () .

Attempts to load the material from the filing system using name as the filename.
Searches current directory, if not found tries, in order, the directories listed in
BRENDER_PATH (if defined). If successful, sets this name as the identifier of
the loaded material and adds the material to the registry.

br_material *

Returns a pointer to the material, if found, else NULL.

BrMaterialFindHook (BrMaterialFindFailedLoad) ;

Import & Export

BrMaterialFileCount ()

Description:

Declaration:

Arguments:

Effects:

Locate a given file and count the number of materials in it.

br_uint_32 BrMaterialFileCount (const char* filename,
br_uint_16* num)

const char * filename

Name of the file containing the materials to count.

br uint_16 * num

Pointer to the variable in which to store the number of materials counted in the file.

If NULL, the file will still be located and appropriate success returned, but no count
will be made.

Searches for £ilename, if no path specified with file looks in current directory, if
not found tries, in order, the directories listed in BRENDER_PATH (if defined).
If a file is found, will count the number of materials stored in it.

Copyright © 1996 Argonaut Technologies Limited 1 6 7

br_material

Result:

br uint_32

Returns zero if the file was found (even if it is not a materials file), non-zero
otherwise.

BrMaterialLoad()

Description:
Declaration:

Arguments:

Effects:

Result:

See Also:

Load a material. Note that it is not added to the registry.

br material* BrMaterialload(const char* filename)
const char * filename

Name of the file containing the material to load.

Searches for f£ilename, if no path specified with file looks in current directory, if
not found tries, in order, the directories listed in BRENDER_PATH (if defined).

br_material *
Returns a pointer to the loaded material, or NULL if unsuccessful.

BrMaterialloadMany () , BrMaterialSave () ,, BrMaterialAdd () ;.

BrMaterialloadMany ()

Description:

Declaration:

Arguments:

Effects:

Result:

See Also:

168

Load a number of materials. Note that they are not added to the registry.

br_uint_32 BrMaterialloadMany (const char* filename,
br material** materials, br_uint_16 num)

const char * filename

Name of the file containing the materials to load.
br_material ** materials

A non-NULL pointer to an array of pointers to materials.
br uint_16 num

Maximum number of materials to load.

Searches for f£ilename, if no path specified with file looks in current directory, if
not found tries, in order, the directories listed in BRENDER_PATH (if defined).

br uint_32

Returns the number of materials loaded successfully. The pointer array supplied,
is filled with pointers to the loaded materials.

To determine how many materials are stored in a file see
BrMaterialFileCount () 4.

Copyright © 1996 Argonaut Technologies Limited

br_material

BrFmtScriptMaterialLoad ()

Description:

Declaration:

Arguments:

Effects:

Result:

Example:

Load a material from a material script. Note that all maps and tables in a script
should be already loaded and registered. If not, this function can be combined with
BrMapFindHook () ,; and BrTableFindHook ()., to facilitate rapid setup of
materials with textures.

br _material* BrFmtScriptMaterialload(const char* filename)
const char * filename
Name of the file containing the material script.

Searches for £ilename, if no path specified with file looks in current directory, if
not found tries, in order, the directories listed in BRENDER_PATH (if defined).

br material *
Returns a pointer to the loaded material, or NULL if unsuccessful.

Material scripts are formatted as follows:

Comment

#

Fields may be given in any order or omitted

#

(a sensible default will be supplied)

Extra white spaces are ignored

material=

[

name = "foo";
flags=
[

light,prelit, smooth, environment, environment_local, perspective,
decal,always_visible, two_sided, force_z_0

1

colour = [10,10,207;

ambient = 0.10;

diffuse = 0.70;

specular = 0.40;

power = 30;

map_transform = [[1,0], [O0,11, [0,011;
index_base = 0;

index_range = 0;

colour_map = "brick";

index_shade = "shade.tab";

Copyright © 1996 Argonaut Technologies Limited 1 69

br_material

BrFmtScriptMaterialLoadMany ()

Description: ~ L.oad a number of materials from a material script.

Declaration: br_uint_32
BrFmtScriptMaterialloadMany (const char* filename,
br material** materials, br_uint_16 num)

Arguments: const char * filename
Name of the file containing a number of concatenated material script entries.
br_material ** materials
A non-NULL pointer to an array of pointers to materials.
br uint_16 num
Maximum number of materials to load.

Effects: Searches for £ilename, if no path specified with file looks in current directory, if
not found tries, in order, the directories listed in BRENDER_PATH (if defined).

Result: br_uint_32

Return the number of materials loaded successfully. The pointer array if supplied,
is filled with pointers to the loaded materials.

BrMaterialSave ()

Description: ~ Save a material to a file.

Declaration: br uint_32 BrMaterialSave (const char* filename,
const br material* material)

Arguments: const char * filename
Name of the file to save the material to.
const br material * material
A pointer to a material.
Effects: Writes the material to a file".
Result: br_uint_32
Returns NULL if the material could not be saved.

See Also: BrWriteModeSet (),

BrMaterialSaveMany ()

Description: ~ Save a number of materials to a file.

* Any existing file of the same name is overwritten.

1 70 Copyright © 1996 Argonaut Technologies Limited

Declaration:

Arguments:

Effects:
Result:

See Also:

br_material

br_uint_32 BrMaterialSaveMany (const char* filename,
const br_material* const* materials, br_uint_16 num)

const char * filename
Name of the file to save the materials to.
const br material * const * materials

A pointer to an array of pointers to materials. If NULL, all registered materials are
saved (irrespective of num).

br uint_16 num

Number of materials to save.

Writes the materials to a file".

br_uint_32

Returns the number of materials saved successfully.

BrWriteModeSet (),

Platform Specific

The supported combinations of material flags vary from platform to platform. The supported
dimensions of texture maps are also platform dependent.

*

Any existing file of the same name is overwritten.

Copyright © 1996 Argonaut Technologies Limited 1 7 1

br_material_enum_cbfn

br material enum cbfn

The Call-Back Function

This type defines a function, supplied to BrMaterialEnum () ,, and to be called by it for a selection

of materials.

The typedef

(See fwproto.h fora precise declaration)

br_uint_32

br_material_ enum_cbfn (br material*, wvoid *)Enumerator

Specification

CBFnMaterialEnum()

Description:

Declaration:

Arguments:

Preconditions:
Effects:
Result:

See Also:

An application defined call-back function accepting a material and an application
supplied argument (as supplied to BrMaterialEnum ()).

br uint_32 BR_CALLBACK CBFnMaterialEnum(br_material* mat,
void* arg)

br material * mat

One of the resource classes selected by BrMaterialEnum () .

void * arg

The argument supplied to BrMaterialEnum () .

BRender has completed initialisation.

Application defined. Avoid adding or removing materials within this function.
br uint_32

Any non-zero value will terminate the enumeration and be returned by
BrMaterialEnum() . Return zero to continue the enumeration.

BrMaterialEnum() , BrMaterialFind () .

172

Copyright © 1996 Argonaut Technologies Limited

br_material_find_cbfn

br material find cbfn

The Call-Back Function

This type defines a function, registered with BrMaterialFindHook () 4, to be called when
BrMaterialFind () or BrMaterialFindMany () fail to find any material.

The typedef

(See fwproto.h fora precise declaration)

br_material* br_material_find_cbfn(const char*) Find(whenBrMaterialFind()
fails)

Specification

CBFnMaterialFind ()

Description: ~ An application defined call-back function used when BrMaterialFind () or
BrMaterialFindMany () s fail.

Declaration: br_material* BR _CALLBACK CBFnMaterialFind(const char* name)
Arguments: const char * name
The search pattern supplied to BrMaterialFind () or
BrMaterialFindMany () ,; that did not match any material.

Preconditions: ~ BRender has completed initialisation. No material has an identifier that
successfully matches the search pattern.

Effects: Application defined.
Result: br_material *

Either return an existing material that is deemed appropriate for the search pattern,
or NULL if there isn’t one. This value will be returned by BrMaterialFind ()
or BrMaterialFindMany () .

Remarks: 'This could either be used to supply a default material or to create a material. If
materials were created on demand, then this function could search another list of
available materials (but not yet created) and see if the pattern matched any of them,
if it did, one of them could be registered and returned. Note that there is no way to
supply more than one material.

See Also: BrMaterialFind (), BrMaterialFindMany () s,
BrMaterialFindHook () ., BrMaterialFindFailedLoad () ;.

Copyright © 1996 Argonaut Technologies Limited 1 7 3

br_matrix23

br matrix23

The Structure

A two column, three row, scalar array, used as a 2D affine matrix, typically for texture map
transformations (translation, scaling, shearing, rotation). Functions are provided to allow it be used as
though it were an integral type. It has the following form:

myy My
myy nmyy
nyy Ny,

Note that this is effectively used as a 3x3 matrix, but omitting the redundant, third column for storage
purposes. Thus:

myy mo; 0
my my 0
My my 1
It is applied to homogenous 2D co-ordinates, which similarly omit the third element for sake of

economy.

It can be noted that the bottom row has a translational effect. Also note, that the matrix determinant
represents the area change effected.

The typedef

(See matrix.h for precise declaration and ordering)

br_scalar m[3][2] Three rows of two columns
Related Structures

See br_material,,.

Members

br scalar m[3][2]

Each element of the matrix can be freely and individually accessed.

This matrix can also be thought of as an array of three br_vector2,, structures, e.g. br_vector?2
m[3]. Thusm[row] can be castas (br_vector2¥*).

1 7 4 Copyright © 1996 Argonaut Technologies Limited

br_matrix23

Arithmetic

BrMatrix23Mul ()

Description: ~ Multiply two matrices together and place the result in a third matrix. Equivalent to
the expression:

A <BC

Declaration: void BrMatrix23Mul (br_matrix34* A, const br matrix34* B,
const br matrix34* C)

Arguments: br_matrix23 * A
A pointer to the destination matrix (must be different from both sources).
const br_matrix23 * B
Pointer to the left hand source matrix.
const br matrix23 * C
Pointer to the right hand source matrix.

Remarks: Theresultin A is equivalent to the following:

boy boy O cop ¢ O bogcoo + by 1o bogcor + boicqy
by by 0| ¢ig ¢y O |=| by +byicyg bigcor + byicyy
byy by 1 €y €y 1 bygCoo + ba1Cro+ Cog bogcop +byrep+ ey 1

See Also: BrMatrix23Pre (), BrMatrix23Post () s

BrMatrix23Inverse ()

Description: Compute the inverse of the supplied matrix. Equivalent to the expression:

A<=B"

Declaration: br_scalar BrMatrix23Inverse (br_matrix23* A,
const br matrix23* B)

Arguments: br_matrix23 * A

A pointer to the destination matrix (must be different from source).

const br_matrix23 * B

A pointer to the source matrix.

Result: br_scalar

If the inverse exists, the determinant of the source matrix is returned. If there is no
inverse, scalar zero is returned.

Copyright © 1996 Argonaut Technologies Limited 1 7 5

br_matrix23

Remarks: Theresult in A is equivalent to the following:

by, —bq, 0
b b 0) [B] B[
00 Zo1 b b
by b, 0] = |T1|0 %f 0
byy by 1
207 (D10b21 = D11bag) (Doibog— bogbyy)
B B

See Also: BrMatrix23LPInverse () .

BrMatrix23LPInverse ()

Description: Compute the inverse of the supplied length preserving” transformation matrix. The
resulting matrix is undefined for non-length preserving matrices.

Equivalent to the expression:
Ap &= BLI1
Declaration: void BrMatrix23LPInverse (br_matrix23* A,
const br_matrix23* B)
Arguments: br_matrix23 * A
A pointer to the destination matrix (must be different from source).
const br matrix23 * B
A pointer to the source matrix.

Remarks: Theresultin A is equivalent to the following:
-1

by by 0 by, ~by, 0
by by 0 = =byy by 0
byy by 1 LP biobyy —by1byy Doibag—Dyobyy 1

LP

See Also: BrMatrix23Inverse() ;.

BrMatrix23ApplyP ()

Description: ~ Applies a transform to a 2D point. Equivalent to the expression:

B, < EC

* Note that length preserving also applies to the sign of lengths, not just their magnitude, i.e. a reflection is not

length preserving in this case.

1 7 6 Copyright © 1996 Argonaut Technologies Limited

br_matrix23

Declaration: void BrMatrix23ApplyP (br_vector2* A, const br_vector2* B,
const br matrix23* C)

Arguments: br_vector2 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed point.

const br vector2 * B

A pointer to the source vector, holding the point to be transformed.

const br matrix23 * C

A pointer to the transform matrix to be applied.

Remarks: Theresultin A is equivalent to the following:
oo Co1 0
(xp yg D cigci 0 |=geog+ypcio+ o XpCor +Ypci+cyy 1)

Cop € 1

BrMatrix23ApplyV ()

Description: ~ Applies a transform to a 2D vector, i.e. as for a point but without translation
components (a vector has no location). Equivalent to the expression:

v, & v;C
Declaration: void BrMatrix23ApplyV (br_vector2* A, const br_vector2* B,
const br_matrix23* C)
Arguments: br_vector2 * A
A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed vector.
const br vector2 * B
A pointer to the source vector, holding the vector to be transformed.
const br matrix23 * C
A pointer to the transform matrix to be applied.

Remarks: Theresultin 2 is equivalent to the following:

coo ¢ O
(xg yp 0)| ci9 ¢; O |=(xgego+ypcio Xpcor +ypcy; 0)
Cy €y 1

Copyright © 1996 Argonaut Technologies Limited 1 7 7

br_matrix23

BrMatrix23TApplyP ()

Description: Applies a transposed transform to a 2D point. Equivalent to the expression:
t
P <RC
Declaration: void BrMatrix23TApplyP (br_vector2* A, const br_vector2* B,
const br_matrix23* C)

Arguments: br_vector2 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed point.

const br_vector2 * B
A pointer to the source vector, holding the point to be transformed.
const br_matrix23 * C

A pointer to the transform matrix to be applied transposed — the translation
elements are presumed zero or irrelevant.

Remarks: Theresultin A is equivalent to the following:
coo Cor O || Xp CooXp T Co1Yn

cp ¢y O Vg | =| CioXp+ €11V
| 1 1

BrMatrix23TApplyV ()

Description: ~ Applies a transposed transform to a 2D vector, i.e. as for a point but without
translation components (a vector has no location). Equivalent to the expression:

t
VA = VBC
Declaration: void BrMatrix23TApplyV (br_vector2* A, const br_vector2* B,
const br matrix23* C)

Arguments: br_vector2 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed vector.

const br_ vector2 * B
A pointer to the source vector, holding the vector to be transformed.
const br matrix23 * C

A pointer to the transform matrix to be applied transposed — the translation
elements are presumed zero or irrelevant.

1 7 8 Copyright © 1996 Argonaut Technologies Limited

br_matrix23

Remarks: Theresult in A is equivalent to the following:
coo co1 O || xp CooXp T Co1Yn

cp ¢;p O Y | T| CioXp+C11Yp
- - 1 0 0

BrMatrix23Pre ()

Description: ~ Pre-multiply one matrix by another. Equivalent to the expression:
A < BA
Declaration: void BrMatrix23Pre (br_matrix23* A, const br _matrix23* B)
Arguments: br_matrix23 * A
A pointer to the subject matrix (may be same as B).
const br_matrix23 * B
A pointer to the pre-multiplying matrix.

Remarks: Theresultin A is equivalent to the following:

byy boy O [agy ag O boyagy + borayg boyagy + bojay;
byg by 0| ay ay 0 |=| byag+bya bigag, +byyay 0
byy by 1 ayy ay 1 bygtgy + byjayg+ayy bygtg +byay +ay 1

See Also: BrMatrix23Post () 5, BrMatrix23Mul () ;5

BrMatrix23PreTranslate ()

Description: ~ Pre-multiply a matrix by a translation transform matrix. Equivalent to the
expression:

M < T, M
Declaration: void BrMatrix23PreTranslate (br matrix23* mat, br_ scalar dx,
br_scalar dy)
Arguments: br_matrix23 * mat

A pointer to the subject matrix.
br scalar dx

The x axis component used to form the translation matrix.

br_scalar dy

The y axis component used to form the translation matrix.

Copyright © 1996 Argonaut Technologies Limited 1 7 9

br_matrix23

Remarks: The result inmat is equivalent to the following:

1 00 Moy Mgy 0 My Moy 0
010 | mgom;;0|=| my Mg, 0
5,9, 1 Myy My 1 8, moy + 8ymlo +my, O,mg + Symll +my 1

See Also: BrMatrix23PostTranslate (), BrMatrix23Translate ()

BrMatrix23PreScale ()

Description: ~ Pre-multiply a matrix by a scaling transform matrix. Equivalent to the expression:
M &S M
Declaration: void BrMatrix23PreScale (br matrix23* mat, br_ scalar sx,
br_scalar sy)
Arguments: br_matrix23 * mat
A pointer to the subject matrix.
br_scalar sx
Scaling component along the x axis.
br_scalar sy
Scaling component along the y axis.

Remarks: The result inmat is equivalent to the following:

s, 00 my my 0 s Mgy S,y 0
0 s, 0 mgy my 0= symyy symy; 0
0 01 My My 1 My My 1

See Also: BrMatrix23PostScale () ;, BrMatrix23Scale () 4

BrMatrix23PreShearX()

Description: ~ Pre-multiply a matrix by an x invariant shearing transform matrix. Equivalent to the
expression:

M < Z,M

Declaration: void BrMatrix23PreShearX (br_matrix23* mat, br_scalar sy)

1 80 Copyright © 1996 Argonaut Technologies Limited

br_matrix23

Arguments: br_matrix23 * mat
A pointer to the subject matrix.
br_scalar sy

Shear factor by which the x co-ordinate is included in the transformed y co-
ordinate.

Remarks: The result in mat is equivalent to the following:

1 o, 0| My Mg 0 My +Oymy, Mg +0,my; 0
01 0|my m; 0]= my, myy
0 0 I)Uny my 1 My My,

See Also: BrMatrix23PostShearX() ,, BrMatrix23ShearX ()

BrMatrix23PreShearY ()

Description: ~ Pre-multiply a matrix by a y invariant shearing transform matrix. Equivalent to the
expression:

M < Z M

Declaration: void BrMatrix23PreShearY (br matrix23* mat, br_scalar sx)
Arguments: br_matrix23 * mat

A pointer to the subject matrix.

br_scalar sx

Shear factor by which the y co-ordinate is included in the transformed x co-
ordinate.

Remarks: The result inmat is equivalent to the following:

1 00 |[my my O Mg My, 0
001)\myy my 1 Ny My, 1

See Also: BrMatrix23PostShearY () ;, BrMatrix23ShearY ()

Copyright © 1996 Argonaut Technologies Limited 1 8 1

br_matrix23

BrMatrix23PreRotate ()

Description: Pre-multiply a matrix by a rotational transform matrix. Equivalent to the
expression:

M <R, M

Declaration: void BrMatrix23PreRotate (br_matrix23* mat, br_angle rz)
Arguments: br_matrix23 * mat

A pointer to the subject matrix.

br_angle rz

The clockwise angle about the z axis used to form the rotation matrix.

Remarks: The result inmat is equivalent to the following:

cos®, sin®, 0 |[mgy my O My, cos0, +mysin®, mg cos®, +my;sin6, 0
—sin®, cos®, 0 || My My O [=| —myisin®, +m cos®, —m, sin®, +m, cosH, 0
0 0 1 Myy My 1 My My, 1

See Also: BrMatrix23PostRotate (), BrMatrix23Rotate () 4

BrMatrix23Post ()

Description: Post-multiply one matrix by another. Equivalent to the expression:
A< AB

Declaration: void BrMatrix23Post (br_matrix23* A, const br matrix23* B)
Arguments: br_matrix23 * A

A pointer to the subject matrix (may be same as B).

const br_matrix23 * B

A pointer to the post-multiplying matrix.

Remarks: Theresultin A is equivalent to the following:

ay ag 0 byy by 0O agobog + agi by agobo; +ag by 0
ayp a; 0 byy by O [=| aypbyy+ay by ajgbg +ay by, 0
ayy ay 1 byy by 1 ayobog + a1 byg+ byg Argbgy + ay by + by 1

See Also: BrMatrix23Pre (), BrMatrix23Mul () .

1 8 2 Copyright © 1996 Argonaut Technologies Limited

br_matrix23

BrMatrix23PostTranslate ()

Description: ~ Post-multiply a matrix by a translation transform matrix. Equivalent to the
expression:

M & MT,,

Declaration: void BrMatrix23PostTranslate (br matrix23* mat, br scalar dx,
br_scalar dy)

Arguments: br_matrix23 * mat
A pointer to the subject matrix.
br scalar dx
The x axis component used to form the translation matrix.
br_scalar dy
The y axis component used to form the translation matrix.

Remarks: The result in mat is equivalent to the following:

mOO m()l O 1 O O m()() m()l O
my, m; 0 0 1 0]= myg my; 0
Myy My 1 d, 5y 1 Mag+ O, my + Sy 1

See Also: BrMatrix23PreTranslate(),,, BrMatrix23Translate () .

BrMatrix23PostScale ()
Description: Post-multiply a matrix by a scaling transform matrix. Equivalent to the expression:

M & MS,,
Declaration: void BrMatrix23PostScale (br matrix23* mat, br_scalar sx,
br_scalar sy)
Arguments: br_matrix23 * mat
A pointer to the subject matrix.
br scalar sx

Scaling component along the x axis.

br_scalar sy

Scaling component along the y axis.

Copyright © 1996 Argonaut Technologies Limited 1 83

br_matrix23

Remarks: The result inmat is equivalent to the following:

my my 0 s, 00 MoSy Mo 8, 0
myy my 01 0 s, 0 |=|mps, mys, 0
My, My 1 0 0 1 MyoS, My Sy 1

See Also: BrMatrix23PreScale (), BrMatrix23Scale () -

BrMatrix23PostShearX()

Description: ~ Post-multiply a matrix by an x invariant shearing transform matrix. Equivalent to
the expression:

M < MZ,

Declaration: void BrMatrix23PostShearX (br_matrix23* mat, br_scalar sy)
Arguments: br_matrix23 * mat
A pointer to the subject matrix.

br_scalar sy

Shear factor by which the x co-ordinate is included in the transformed y
co-ordinate.

Remarks: The result inmat is equivalent to the following:

myy my 0] 1 c, 0 myy MyyO,+mgy 0
mygy my 0410 1 0 |=|myy mo,+my; 0
My, my 1)L0 0 1 Myy MygO, +my 1

See Also: BrMatrix23PreShearX() 5, BrMatrix23ShearX () .

BrMatrix23PostShearY ()

Description: Post-multiply a matrix by a y invariant shearing transform matrix. Equivalent to the
expression:

M < MZ,

Declaration: void BrMatrix23PostShearY (br matrix23* mat, br scalar sx)

Arguments: br_matrix23 * mat

A pointer to the subject matrix.

br scalar sx

Shear factor by which the y co-ordinate is included in the transformed x
co-ordinate.

1 8 4 Copyright © 1996 Argonaut Technologies Limited

br_matrix23

Remarks: The result inmat is equivalent to the following:

Moy My 0 1 00 Moy + My O, My 0
myoy, m;; O0|lo, 10 |=\me+m;c6, m; 0O
Moy My 1 0 01 Moo+ My O, My 1

See Also: BrMatrix23PreShearY (), BrMatrix23ShearY () .

BrMatrix23PostRotate ()

Description: ~ Post-multiply a matrix by a rotational transform matrix. Equivalent to the
expression:

M & MR,

Declaration: void BrMatrix23PostRotate (br_matrix23* mat, br_angle rz)
Arguments: br_matrix23 * mat

A pointer to the subject matrix.

br_angle rz

The clockwise angle about the z axis used to form the rotation matrix.

Remarks: The result inmat is equivalent to the following:

my, mg 0 cos®, sin®_ 0 Mg 080, —mgy sin®, mgysin®_+ mg;cosO, 0
myg, m; O —sin®_ cos®_ 0 [=| m,cosO, —my;sin6, mysin® +m cosb, 0
Moy My 1 0 0 1 Mo, COS0, —my Sinb, my,sin6, + m, cosO, 1

See Also: BrMatrix23PreRotate () 5, BrMatrix23Rotate () 4.

Copy/Assign

Although copy by structure assignment currently works, use BrMatrix23Copy () ;s to ensure
compatibility.

BrMatrix23Copy ()
Description: Copy a matrix. Equivalent to the expression:
A<B

Declaration: void BrMatrix23Copy (br_matrix23* A, const br_matrix23* B)

Copyright © 1996 Argonaut Technologies Limited 1 8 5

br_matrix23

Arguments:

br matrix23 * A

A pointer to the destination matrix (may be the same as source — though
redundant).

const br matrix23 * B

A pointer to the source matrix.

Access & Maintenance

Members may be freely accessed. Maintenance is only required for length preserving matrices that

have been modified.

BrMatrix23LPNormalise ()

Description:

Declaration:

Arguments:

Effects:

Remarks:

Normalise a length preserving” matrix. Equivalent to the expression:

A p&=Norm(B_,;)

void BrMatrix23LPNormalise (br_matrix23* A,
const br_matrix23* B)

br matrix23 * A

A pointer to the destination matrix, which must not point to the source matrix.
const br_matrix23 * B

A pointer to the source matrix.

The destination matrix is the source matrix adjusted so that it represents a length
preserving transformation.

"This function is typically applied to a length preserving matrix which has
undergone a long sequence of operations, to ensure that the final matrix is still truly
length-preserving.

Referencing & Lifetime

This structure may be freely referenced, though take care if there is potential to supply the same
matrix as more than one argument to the same function.

*

Note that length preserving also applies to the sign of lengths, not just their magnitude, i.e. a reflection is not

length preserving in this case.

186

Copyright © 1996 Argonaut Technologies Limited

br_matrix23

Initialisation
No static initialisers are provided, however, three BR_VECTOR2 () macros would serve as well.

All other initialisation should use the functions BrMatrix23Identity ()
BrMatrix23Translate (), BrMatrix23Scale () ,, BrMatrix23Shear[XIY] () 50
BrMatrix23Rotate () 4, Or BrMatrix23Copy () .

BrMatrix23Identity ()

Description: Set the specified matrix to the identity transformation matrix. Equivalent to:

100
M&I=l 0 1 0

0 0 1

Declaration: void BrMatrix23Identity (br_matrix23* mat)
Arguments: br_matrix23 * mat
A pointer to the destination matrix.

Effects: Stores the identity matrix at the destination.

BrMatrix23Translate ()

Description: Set the specified matrix to a matrix representing a specific translation.
Equivalent to:

M<:TxyE

o O =
o — O
- O O

X y
Declaration: void BrMatrix23Translate (br _matrix23* mat, br_scalar dx,
br_scalar dy)
Arguments: br_matrix23 * mat
A pointer to the destination matrix.
br scalar dx

Translation component along the x axis.

br_scalar dy

Translation component along the y axis.

See Also: BrMatrix23PreTranslate(),,, BrMatrix23PostTranslate () ;.

Copyright © 1996 Argonaut Technologies Limited 1 8 7

br_matrix23

BrMatrix23Scale ()

Description: Set the specified matrix to a matrix representing a specific scaling. Equivalent to:

.00
MCSxyE 0 h) 0

Y

0 0 1

S

Declaration: void BrMatrix23Scale (br_matrix23* mat, br_scalar sx,
br_scalar sy)

Arguments: br_matrix23 * mat
A pointer to the destination matrix.
br scalar sx
Scaling component along the x axis.
br_scalar sy
Scaling component along the y axis.

See Also: BrMatrix23PreScale (), BrMatrix23PostScale () ;.

BrMatrix23ShearX()

Description: Set the specified matrix to a matrix representing a shear, invariant along the x axis.
Thus values of y co-ordinates will be scaled in proportion to the value of the x co-
ordinate. Equivalent to:

1l o, O
MeZy= 0 1 0
0 0 1

Declaration: void BrMatrix23ShearX (br_matrix23* mat, br_scalar sy)
Arguments: br_matrix23 * mat

A pointer to the destination matrix.

br_scalar sy

Shear factor by which the x co-ordinate is included in the transformed y co-
ordinate.

See Also: BrMatrix23PreShearX() ;, BrMatrix23PostShearX() .

1 8 8 Copyright © 1996 Argonaut Technologies Limited

br_matrix23

BrMatrix23ShearY ()

Description: Set the specified matrix to a matrix representing a shear, invariant along the y axis.
Thus values of x co-ordinates will be scaled in proportion to the value of the y co-
ordinate. Equivalent to:

1 0O
MCZYE o, 1 0

0 01

Declaration: void BrMatrix23ShearX (br_matrix23* mat, br_scalar sx)
Arguments: br_matrix23 * mat

A pointer to the destination matrix.

br_scalar sx

Shear factor by which the y co-ordinate is included in the transformed x co-
ordinate.

See Also: BrMatrix23PreShearY (), BrMatrix23PostShearY () .-

BrMatrix23Rotate ()

Description: Set the specified matrix to a matrix representing a rotation about the z axis though
a specified angle. Equivalent to:

cos9, sinB, O
MCRGZE —sin@, cosB, 0O
0 0 1

Declaration: void BrMatrix23Rotate (br_matrix23* mat, br_angle rz)
Arguments: br_matrix23 * mat

A pointer to the destination matrix.

br_angle rz

Clockwise rotation about the z axis.

See Also: BrMatrix23PreRotate () 5, BrMatrix23PostRotate () ;.

Copyright © 1996 Argonaut Technologies Limited 1 89

br_matrix34

br matrix34

The Structure

A three column, four row, scalar array, used as a 3D affine matrix for general purpose 3D
transformations (translation, scaling, shearing, rotation). Functions are provided to allow it be used as
though it were an integral type. It has the following form:

Moy Mgy Moy
My Ny My

Myy Ny My

msy Ny My

Note that this is effectively used as a 4x4 matrix, but omitting the redundant, fourth column for
storage purposes. Thus:

3
=
3
3
S
- o o o

It is applied to homogenous 3D co-ordinates, which similarly omit the fourth element for sake of
economy.

It can be noted that the bottom row has a translational effect. Also note, that the matrix determinant
represents the volume change effected.

The typedef

(See matrix.h for precise declaration and ordering)

br_scalar m[4] [3] Four rows of three columns
Related Functions

Scene Modelling

See BrActorToActorMatrix34 (),,.

Maths

See BrMatrix4Pre34 (),,, BrMatrix4Copy34 (),

1 90 Copyright © 1996 Argonaut Technologies Limited

br_matrix34

Miscellaneous

See BrMatrix34RollingBall ().

Related Structures

See br_matrix4,,, br_material,,, br_pick3d_cbfn,,..

Members

br _scalar m[4] [3]

Each element of the matrix can be freely and individually accessed.

This matrix can also be thought of as an array of four br_vector3, structures, e.g. br_vector3
m([4]. Thusm[row] can be cast as (br_vector3*).

Arithmetic

BrMatrix34Mul ()

Description: ~ Multiply two matrices together and place the result in a third matrix. Equivalent to
the expression:

A < BC

Declaration: void BrMatrix34Mul (br_matrix34* A, const br _matrix34* B,
const br matrix34* C)

Arguments: br_matrix34 * A

A pointer to the destination matrix (must be different from both sources).
const br_matrix34 * B

Pointer to the left hand source matrix.

const br_matrix34 * C

Pointer to the right hand source matrix.

Copyright © 1996 Argonaut Technologies Limited 1 9 1

br_matrix34

Remarks: Theresult in A is equivalent to the following:

by bgy by O Coo Co1 Con O

by by by 0 cio ¢ € 0 _

byy by by O €y €y Cxp 0

byy by by 1 C3 €3 Cx 1

bogcoo + bo1¢19 + bacag bogcor + bojcyy + bpycyy bogcon + by C1p + by 0
bigcoo + byycig+ biacay bigcor +byycyy +bypey bigcor + byycip + bypey, 0
bygCoo + b1 1o+ byyCa bygCor + by Cyy + by bygCop + by €1y + by 0
b3gCoo + b31C10 + b3pCog + €39 bagCoy + byjcyy + b3y 03 bygCoy +byC1p+bypeny + ey

See Also:

BrMatrix34Pre (), BrMatrix34Post (),,

BrMatrix34Inverse ()

Description:

Compute the inverse of the supplied 3D affine matrix. Equivalent to the
expression:

A<=B"

Declaration:

Arguments:

Result:

Remarks:

See Also:

192

br scalar BrMatrix34Inverse (br_matrix34* A,
const br_matrix34* B)

br matrix34 * A

A pointer to the destination matrix (must be different from source).
const br matrix34 * B

A pointer to the source matrix.

br_scalar

If the inverse exists, the determinant of the source matrix is returned. If there is no
inverse, scalar zero is returned.

Remember that while an inverse may be obtained using double precision
arithmetic, this does not necessarily mean that it can using thebr_scalar,,, type.
"This difference is most marked between fixed and floating point BRender libraries.

BrMatrix34LPInverse () ;.

Copyright © 1996 Argonaut Technologies Limited

br_matrix34

BrMatrix34LPInverse ()

Description:

Declaration:

Arguments:

See Also:

Compute the inverse of the supplied length preserving” transformation matrix. The
resulting matrix is undefined for non-length preserving matrices.

Equivalent to the expression:

-1
Ap,&=Bp

void BrMatrix34LPInverse (br _matrix34* A,
const br_matrix34* B)

br matrix34 * A

A pointer to the destination matrix (must be different from source).
const br matrix34 * B

A pointer to the source matrix.

BrMatrix34Inverse () .

BrMatrix34Apply ()

Description:

Declaration:

Arguments:

Applies a transform to a 3D point which may have non-unity homogenous co-
ordinates. Equivalent to the expression:

B, < P,C

void BrMatrix34Apply (br_vector3* A, const br_vector4* B,
const br_matrix34* C)

br _vector3’ * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed point.

const br_vector4 * B

A pointer to the source vector, holding the point to be transformed.

const br matrix34 * C

A pointer to the transform matrix to be applied.

Note that length preserving also applies to the sign of lengths, not just their magnitude, i.e. a reflection is not

length preserving in this case.

1 The reason the destination vector argument is a br_vector3 and notabr_wvector4, is because it is
sometimes useful to supply abr_wector3, which would be quite invalid if the argument specified a
br_vector4.

Copyright © 1996 Argonaut Technologies Limited 1 93

br_matrix34

Remarks:

(XB YB g WB)

Be aware that the fourth element of the resulting vector is only implicit, and if
required must either be copied (if the destination is actually a br_vector4,,) or
used to scale down the first three elements. This all depends on the purpose for
which this function is called.

The result in A is equivalent to the following:
Coo Co1 Co2 O

o ‘11 ‘12

0
€y €y € O
1

C30 €31 €3

(XBCOO T YpCio+ gl t WpC30 XpCo1 T YpC11 +2pCo1 ¥ WpC31 XpCox T YpCip + 2pCon + WpCsp {WB])

BrMatrix34ApplyP ()

Description:

Declaration:

Arguments:

Remarks:

(XB YB ZB 1)

Applies a transform to a 3D point. Equivalent to the expression:

<= BC

void BrMatrix34ApplyP (br_vector3* A, const br_vector3* B,
const br matrix34* C)

br_vector3 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed point.

const br_vector3 * B

A pointer to the source vector, holding the point to be transformed.

const br_matrix34 * C

A pointer to the transform matrix to be applied.

The resultin 2 is equivalent to the following:

o Cor €2 O

¢o ¢ ¢ 0

€y €y € 0
1

C30 €31 C3

(XBCOO+YBC10+23620+C30 XpCo1 T YpC11 T 2pCo T C31 XgCop+YpCin+ 2ty t+Cxp 1)

194

Copyright © 1996 Argonaut Technologies Limited

br_matrix34

BrMatrix34ApplyV ()

Description:

Declaration:

Arguments:

Remarks:

(XB YB B 0)

Applies a transform to a 3D vector, 1.e. as for a point but without translation
components (a vector has no location). Equivalent to the expression:

v, = v;C

void BrMatrix34ApplyV (br_vector3* A, const br_vector3* B,
const br_matrix34* C)

br vector3 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed vector.

const br vector3 * B

A pointer to the source vector, holding the vector to be transformed.

const br matrix34 * C

A pointer to the transform matrix to be applied.

The resultin 2 is equivalent to the following:

Coo Co1 € O

0
Cyp €y Cx;p O
1

(XBCOO T YpCio+2pCao+ C30 XpCo1 T Y€y +2pCo1 + 31 XpCop +YpCip T 2pCon +C3p @

BrMatrix34TApply ()

Description:

Declaration:

Arguments:

Applies a transform to a transposed 3D point which may have non-unity
homogenous co-ordinates. Equivalent to the expression:

P, < BC'

void BrMatrix34TApply (br_vector4* A, const br_vector4* B,
const br matrix34* C)

br vectord4 * A

A pointer to the destination vector (must be different from source), to hold the
transformed point.

const br vector4 * B

A pointer to the source vector, holding the point to be transformed.

const br matrix34 * C

A pointer to the transform matrix to be applied transposed.

Copyright © 1996 Argonaut Technologies Limited 1 9 5

br_matrix34

Remarks:

The resultin A is equivalent to the following:

Coo Co1 € O Xp CooXp T Co1YB t C2lp
o ¢ ¢ 0 Y| _ CioXpt C11Ypt+ C122p
€ €y Cp O 2B CopXp+ Cy1Yp + C22lp
€y €3 C3p 1 Wp C30Xp + C31Yp T C322p+ Wp

BrMatrix34TApplyP ()

Description:

Applies a transposed transform to a 3D point. Equivalent to the expression:

B, < FC'

Declaration:

Arguments:

Remarks:

void BrMatrix34TApplyP (br_vector3* A, const br_vector3* B,
const br_matrix34* C)

br vector3 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed point.

const br_vector3 * B
A pointer to the source vector, holding the point to be transformed.
const br_matrix34 * C

A pointer to the transform matrix to be applied transposed — the translation
elements are presumed zero or irrelevant.

The result in 2 is equivalent to the following:

Coo Co1 €2 O Xp CooXp + Co1Yp T Cpalp
Cio €11 Ci2 O || Yp | _| CloXp+ et Ciazp
€ €y € O 2B CopXp+ Cy1Yp + Co2Zp
- - - 1 1 1

BrMatrix34TApplyV ()

Description:

Declaration:

196

Applies a transposed transform to a 3D vector, i.e. as for a point but without
translation components (a vector has no location). Equivalent to the expression:

t
v, = v;C

void BrMatrix34TApplyV (br_vector3* A, const br_vector3* B,
const br_matrix34* C)

Copyright © 1996 Argonaut Technologies Limited

Arguments:

Remarks:

br_matrix34

br vector3 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed vector.

const br vector3 * B
A pointer to the source vector, holding the vector to be transformed.

const br matrix34 * C

A pointer to the transform matrix to be applied transposed — the translation
elements are presumed zero or irrelevant.

The result in A is equivalent to the following:

Coo Coi € O Xp CooXp + Co1Yp T C2Zp
o ¢ ¢ 0 Y | | C1o¥B ¥ C11Yp+ C1alp
€ €y Cp O 2B CooXp+C1Yp+ CZp
- - - 1 0 0

BrMatrix34Pre ()

Description:

Declaration:

Arguments:

See Also:

Pre-multiply one matrix by another. Equivalent to the expression:

A < BA

void BrMatrix34Pre (br_matrix34* A, const br_matrix34* B)
br matrix34 * A

A pointer to the subject matrix (may be same as B).

const br matrix34 * B

A pointer to the pre-multiplying matrix.

BrMatrix34Post (), BrMatrix34Mul () ,,

BrMatrix34PreTranslate ()

Description:

Declaration:

Pre-multiply a matrix by a translation transform matrix. Equivalent to the
expression:

M & T, M

void BrMatrix34PreTranslate (br matrix34* mat, br_ scalar dx,
br_scalar dy, br_scalar dz)

Copyright © 1996 Argonaut Technologies Limited 1 9 7

br_matrix34

Arguments: br_matrix34 * mat

A pointer to the subject matrix.

br scalar dx

The x axis component used to form the translation matrix.
br_scalar dy

The y axis component used to form the translation matrix.
br scalar dz

The z axis component used to form the translation matrix.

See Also: BrMatrix34PostTranslate(),,, BrMatrix34Translate(),,

BrMatrix34PreScale ()

Description: ~ Pre-multiply a matrix by a scaling transform matrix. Equivalent to the expression:

M&S,.,. M

xyz

Declaration: void BrMatrix34PreScale (br matrix34* mat, br scalar sx,
br_scalar sy, br_scalar sz)

Arguments: br_matrix34 * mat

A pointer to the subject matrix.

br scalar sx

Scaling component along the x axis.
br_scalar sy

Scaling component along the y axis.
br scalar sz

Scaling component along the z axis.

See Also: BrMatrix34PostScale (), BrMatrix34Scale(),,

BrMatrix34PreShearX()

Description: ~ Pre-multiply a matrix by an x invariant shearing transform matrix. Equivalent to the
expression:

M < Z,M

Declaration: void BrMatrix34PreShearX (br_matrix34* mat, br_scalar sy,
br_scalar sz)

1 9 8 Copyright © 1996 Argonaut Technologies Limited

br_matrix34

Arguments: br_matrix34 * mat
A pointer to the subject matrix.
br_scalar sy

Shear factor by which the x co-ordinate is included in the transformed y co-
ordinate.

br scalar sz

Shear factor by which the x co-ordinate is included in the transformed z co-
ordinate.

See Also: BrMatrix34PostShearX(),; BrMatrix34ShearX(),,

BrMatrix34PreShearY ()

Description: ~ Pre-multiply a matrix by a y invariant shearing transform matrix. Equivalent to the
expression:

M < Z M

Declaration: void BrMatrix34PreShearY (br matrix34* mat, br_scalar sx,
br_scalar sz)

Arguments: br_matrix34 * mat
A pointer to the subject matrix.
br_scalar sx

Shear factor by which the y co-ordinate is included in the transformed x co-
ordinate.

br_scalar sz

Shear factor by which the y co-ordinate is included in the transformed z co-
ordinate.

See Also: BrMatrix34PostShearY (),,, BrMatrix34ShearY (),

BrMatrix34PreShear?Z ()

Description: ~ Pre-multiply a matrix by a z invariant shearing transform matrix. Equivalent to the
expression:

M < ZM

Declaration: void BrMatrix34PreShearY (br matrix34* mat, br_scalar sx,
br_scalar sy)

Copyright © 1996 Argonaut Technologies Limited 1 99

br_matrix34

Arguments:

See Also:

br matrix34 * mat
A pointer to the subject matrix.
br scalar sx

Shear factor by which the z co-ordinate is included in the transformed x co-
ordinate.

br_scalar sy

Shear factor by which the z co-ordinate is included in the transformed y co-
ordinate.

BrMatrix34PostShearZ(),,, BrMatrix34ShearZ(),,

BrMatrix34PreRotate ()

Description:

Declaration:

Arguments:

See Also:

Pre-multiply a matrix by a vector specified axis, rotational transform matrix.
Equivalent to the expression:

M&eR,M

void BrMatrix34PreRotate (br_matrix34* mat, br_angle r,
const br_vector3* axis)

br matrix34 * mat
A pointer to the subject matrix.
br_angle r

The angle about the specified axis used to form the rotation matrix. A positive
angle represents a clockwise rotation (with the vector pointing at you).

const br vector3*

The arbitrary (normalised) axis vector about which the rotation occurs.

BrMatrix34PostRotate (),,, BrMatrix34Rotate (),

BrMatrix34PreRotateX ()

Description:

Declaration:

Arguments:

200

Pre-multiply a matrix by an x axis rotational transform matrix. Equivalent to the
expression:

M <R, M

void BrMatrix34PreRotateX (br_matrix34* mat, br_angle rx)
br_matrix34 * mat

A pointer to the subject matrix.

br_angle rx

The angle about the x axis used to form the rotation matrix. A positive angle
represents a clockwise rotation (looking toward the origin).

Copyright © 1996 Argonaut Technologies Limited

br_matrix34

See Also: BrMatrix34PostRotateX (), BrMatrix34RotateX(),,

BrMatrix34PreRotateY ()

Description: Pre-multiply a matrix by a y axis, rotational transform matrix. Equivalent to the
expression:

M<=R, M

Declaration: void BrMatrix34PreRotateY (br_matrix34* mat, br_angle ry)
Arguments: br_matrix34 * mat

A pointer to the subject matrix.

br_angle ry

The angle about the y axis used to form the rotation matrix. A positive angle
represents a clockwise rotation (looking towards the origin).

See Also: BrMatrix34PostRotateY (),,;, BrMatrix34RotateY (),

BrMatrix34PreRotateZ ()

Description: ~ Pre-multiply a matrix by a z axis, rotational transform matrix. Equivalent to the
expression:

M <R, M

Declaration: void BrMatrix34PreRotateZ (br_matrix34* mat, br_angle rz)
Arguments: br_matrix34 * mat

A pointer to the subject matrix.

br_angle rz

The angle about the z axis used to form the rotation matrix. A positive angle
represents a clockwise rotation (looking towards the origin).

See Also: BrMatrix34PostRotateZ (),y BrMatrix34RotateZ (),

BrMatrix34PreTransform()

Description: ~ Pre-multiply a matrix by a generic transform. Equivalent to the expression:
M < M;M

Declaration: void BrMatrix34PreTransform(br matrix34* mat,
const br transform* xform)

Copyright © 1996 Argonaut Technologies Limited 20 1

br_matrix34

Arguments: br_matrix34 * mat
A pointer to the subject matrix.
const br transform * xform
The pre-multiplying generic transform.

Effects: The transform is first converted to a general 3x4 transform matrix using
BrTransformToMatrix34 (),; and then applied as a pre-multiplying matrix
using BrMatrix34Pre () .

See Also: BrMatrix34PostTransform () .

BrMatrix34Post ()

Description: Post-multiply one matrix by another. Equivalent to the expression:
A< AB

Declaration: void BrMatrix34Post (br_matrix34* A, const br matrix34* B)
Arguments: br_matrix34 * A
A pointer to the subject matrix (may be same as B).
const br_matrix34 * B
A pointer to the post-multiplying matrix.
See Also: BrMatrix34Pre (), BrMatrix34Mul (),

BrMatrix34PostTranslate ()

Description: Post-multiply a matrix by a translation transform matrix. Equivalent to the
expression:

M&MT

xyz

Declaration: void BrMatrix34PostTranslate (br matrix34* mat, br_scalar dx,
br_scalar dy, br_scalar dz)

Arguments: br_matrix34 * mat

A pointer to the subject matrix.
br scalar dx

The x axis component used to form the translation matrix.

br_scalar dy

The y axis component used to form the translation matrix.

br scalar dz

The z axis component used to form the translation matrix.

See Also: BrMatrix34PreTranslate (), BrMatrix34Translate (),

202 Copyright © 1996 Argonaut Technologies Limited

br_matrix34

BrMatrix34PostScale ()

Description:

Declaration:

Arguments:

See Also:

M < MS

Post-multiply a matrix by a scaling transform matrix. Equivalent to the expression:

xyz

void BrMatrix34PostScale (br matrix34* mat, br_scalar sx,
br_scalar sy, br_scalar sz)

br matrix34 * mat

A pointer to the subject matrix.

br scalar sx

Scaling component along the x axis.
br_scalar sy

Scaling component along the y axis.
br scalar sz

Scaling component along the z axis.

BrMatrix34PreScale () BrMatrix34Scale(),,

BrMatrix34PostShearX()

Description:

Declaration:

Arguments:

See Also:

Post-multiply a matrix by an x invariant shearing transform matrix. Equivalent to
the expression:

M < MZ,

void BrMatrix34PostShearX (br_matrix34* mat, br_scalar sy,
br_scalar sz)

br_matrix34 * mat
A pointer to the subject matrix.
br_scalar sy

Shear factor by which the x co-ordinate is included in the transformed y co-
ordinate.

br_scalar sz

Shear factor by which the x co-ordinate is included in the transformed z co-
ordinate.

BrMatrix34PreShearX (), BrMatrix34ShearX ().,

Copyright © 1996 Argonaut Technologies Limited 203

br_matrix34

BrMatrix34PostShearY ()

Description: Post-multiply a matrix by a y invariant shearing transform matrix. Equivalent to the
expression:

M < MZ,

Declaration: void BrMatrix34PostShearY (br_matrix34* mat, br_scalar sx,
br_ scalar sz)

Arguments: br_matrix34 * mat
A pointer to the subject matrix.
br scalar sx

Shear factor by which the y co-ordinate is included in the transformed x co-
ordinate.

br scalar sz

Shear factor by which the y co-ordinate is included in the transformed z co-
ordinate.

See Also: BrMatrix34PreShearY (), BrMatrix34ShearY (),

BrMatrix34PostShearZ ()

Description: ~ Post-multiply a matrix by a z invariant shearing transform matrix. Equivalent to the
expression:

M < MZ,

Declaration: void BrMatrix34PostShearY (br matrix34* mat, br scalar sx,
br_scalar sy)

Arguments: br_matrix34 * mat
A pointer to the subject matrix.
br_scalar sx

Shear factor by which the z co-ordinate is included in the transformed x co-
ordinate.

br_scalar sy

Shear factor by which the z co-ordinate is included in the transformed y co-
ordinate.

See Also: BrMatrix34PreShearZ (), BrMatrix34ShearZ(),,

204 Copyright © 1996 Argonaut Technologies Limited

br_matrix34

BrMatrix34PostRotate ()

Description: ~ Post-multiply a matrix by a vector specified axis, rotational transform matrix.
Equivalent to the expression:

M <= MR,

Declaration: void BrMatrix34PostRotate (br_matrix34* mat, br_angle r,
const br_vector3* axis)

Arguments: br_matrix34 * mat
A pointer to the subject matrix.
br_angle r
The angle about the specified axis used to form the rotation matrix.
const br vector3*
The arbitrary (normalised) axis vector about which the rotation occurs.
See Also: BrMatrix34PreRotate (),,, BrMatrix34Rotate (),

BrMatrix34PostRotateX ()

Description: ~ Post-multiply a matrix by an x axis rotational transform matrix. Equivalent to the
expression:

M <= MR,

Declaration: void BrMatrix34PostRotateX (br_matrix34* mat, br_angle rx)
Arguments: br_matrix34 * mat

A pointer to the subject matrix.

br_angle rx

The angle about the x axis used to form the rotation matrix. A positive angle
represents a clockwise rotation (looking towards the origin).

See Also: BrMatrix34PreRotateX (), BrMatrix34RotateX(),,

BrMatrix34PostRotateY ()

Description: ~ Post-multiply a matrix by a y axis, rotational transform matrix. Equivalent to the
expression:

M < MR,

Declaration: void BrMatrix34PostRotateY (br_matrix34* mat, br_angle ry)

Copyright © 1996 Argonaut Technologies Limited 20 5

br_matrix34

Arguments: br_matrix34 * mat
A pointer to the subject matrix.
br_angle ry

The angle about the y axis used to form the rotation matrix. A positive angle
represents a clockwise rotation (looking towards the origin).

See Also: BrMatrix34PreRotateY (),,, BrMatrix34RotateY (),

BrMatrix34PostRotateZ ()

Description: ~ Post-multiply a matrix by a z axis, rotational transform matrix. Equivalent to the
expression:

M <= MR,

Declaration: void BrMatrix34PostRotateZ (br_matrix34* mat, br_angle rz)
Arguments: br_matrix34 * mat

A pointer to the subject matrix.

br_angle rz

The angle about the z axis used to form the rotation matrix. A positive angle
represents a clockwise rotation (looking towards the origin).

See Also: BrMatrix34PreRotateZ (),,, BrMatrix34RotateZ (),;

BrMatrix34PostTransform()

Description: ~ Post-multiply a matrix by a generic transform. Equivalent to the expression:

M < MM,

Declaration: void BrMatrix34PostTransform(br_matrix34* mat,
const br_ transform* xform)

Arguments: br_matrix34 * mat
A pointer to the subject matrix.
const br_transform * xform
The post-multiplying generic transform.

Effects: The transform is first converted to a general 3x4 transform matrix using
BrTransformToMatrix34 ()., and then applied as a post-multiplying matrix
using BrMatrix34Post () 5.

See Also: BrMatrix34PreTransform(),,.

206 Copyright © 1996 Argonaut Technologies Limited

br_matrix34

Conversion

Note that only matrices can represent the full gamut of translation, shearing, reflection, and scaling
effects, some of these effects will be lost (or produce undefined behaviour) when converting into
another transformation.

From Eulers, Quaternions and Transforms
See BrEulerToMatrix34 () ,;, BrQuatToMatrix34 () ;,;, BrTransformToMatrix34 () .

Also see BrTransformToTransform () s,.

To Eulers, Quaternions and Transforms

See BrMatrix34ToEuler (), BrMatrix34ToQuat (), BrMatrix34ToTransform () ,; as
described below.

Also see BrTransformToTransform () i,.

BrMatrix34ToEuler ()

Description: ~ Converta 3D affine matrix to a Euler angle set, that would have the same rotational
effect.

Declaration: br euler* BrMatrix34ToEuler (br_euler* euler,
const br _matrix34* mat)

Arguments: br_euler * euler

A pointer to the destination Euler angle set to receive the conversion. The Euler
angle set’s Euler order is used to determine each angle.

const br matrix34 * mat

A pointer to the source matrix to convert from.
Result: br_euler *

Returns euler for convenience.

Remarks: Translation components of the matrix are lost in conversion.

BrMatrix34ToQuat ()

Description: ~ Convert a 3D affine matrix to a quaternion, that would have the same rotational
effect.

Declaration: br_quat* BrMatrix34ToQuat (br_quat* q,
const br_matrix34* mat)

Copyright © 1996 Argonaut Technologies Limited 20 7

br_matrix34

Arguments:

Result:

Remarks:

br_quat * g

A pointer to the destination quaternion to receive the conversion.
const br matrix34 * mat

A pointer to the source matrix to convert from.

br_quat * g

Returns g for convenience.

Translation components of the matrix are lost in conversion.

BrMatrix34ToTransform()

Description:
Declaration:

Arguments:

Effects:

208

Convert a 3D affine matrix into a specific transform, that would have a similar
transformational effect.

void BrMatrix34ToTransform(br transform* xform,
const br_matrix34* mat)

br transform * xform

A pointer to the destination transform. The type member of the destination
transform is retained and determines the method of conversion.

const br_matrix34 * mat
A pointer to the source matrix to be converted.

When the transform is the identity
The destination transform is left unchanged — no conversion necessary.
When the transform is a translation

The translation component of the matrix (its bottom row) is copied into the
translation vector of the transform.

When the transform is a Euler angle set

Calls BrMatrix34ToEuler (),, and copies the matrix’s translation component
(its bottom row) int to the translation vector of the transform.

When the transform is a Look-Up

The Up vector is left unchanged and should really be set before rather than after
this conversion.

Copies the third row into the Look vector (if zero (0,0,0) then (0,1,0) is used
instead).

The matrix’s translation component is copied into the translation vector of the
transform.

When the transform is a quaternion

Calls BrMatrix34ToQuat ()., and copies the matrix’s translation component (its
bottom row) int to the translation vector of the transform.

Copyright © 1996 Argonaut Technologies Limited

br_matrix34

When the transform is a 304 matrix
Directly copies the matrix into the transform.
When the transform is a 3x4 length preserving matrix

Directly copies the matrix into the transform and then calls
BrMatrix34LPNormalise ().

Copy/Assign

Although copy by structure assignment currently works, use BrMatrix34Copy () 5, Or
BrMatrix34Copy4 (), to ensure compatibility.

BrMatrix34Copy ()

Description: Copy a matrix. Equivalent to the expression:

A<B
Declaration: void BrMatrix34Copy (br_matrix34* A, const br_matrix34* B)
Arguments: br_matrix34 * A

A pointer to the destination matrix (may be the same as source — though
redundant).

const br matrix34 * B

A pointer to the source matrix.

BrMatrix34Copy4 ()

Description: ~ Copy a 4x4 matrix into a 3x4 matrix, discarding right-hand column. Equivalent to
the expression:

A<=B

Declaration: void BrMatrix34Copy4 (br_matrix34* A, const br_matrix4* B)
Arguments: br_matrix34 * A

A pointer to the destination matrix.

const br matrix4 * B

A pointer to the source 4x4 matrix.

See Also: BrMatrix4Copy34 () i

Copyright © 1996 Argonaut Technologies Limited 209

br_matrix34

Access & Maintenance

Members may be freely accessed. Maintenance is only required for length preserving matrices that
have been modified.

BrMatrix34LPNormalise ()

Description: Normalise a length preserving” matrix. Equivalent to the expression:

A, p &= Norm(B_;,)

Declaration: void BrMatrix34LPNormalise (br _matrix34* A,
const br_matrix34* B)

Arguments: br_matrix34 * A
A pointer to the destination matrix, which must not point to the source matrix.
const br matrix34 * B
A pointer to the source matrix.

Effects: The destination matrix is the source matrix adjusted so that it represents a length
preserving transformation.

Remarks: This function is typically applied to a length preserving matrix which has
undergone a long sequence of operations, to ensure that the final matrix is still truly
length preserving (regardless of rounding errors).

Referencing & Lifetime

This structure may be freely referenced, though take care if there is potential to supply the same
matrix as more than one argument to the same function.

Initialisation
No static initialisers are provided. However, four BR_VECTOR3 () macros would serve as well.

All other initialisation should use BrMatrix34Copy () ,, or any of the following initialisation
functions.

* Note that length preserving also applies to the sign of lengths, not just their magnitude, i.e. a reflection is not
length preserving in this case.

2 1 O Copyright © 1996 Argonaut Technologies Limited

br_matrix34

BrMatrix34Identity ()

Description: Set the specified matrix to the identity transformation matrix. Equivalent to:

1 0 0
0 1
00 0
0 0 01

Declaration: void BrMatrix34Identity (br_matrix34* mat)

M<l=

- O O

Arguments: br_matrix34 * mat
A pointer to the destination matrix.

Effects: Stores the identity matrix at the destination.

BrMatrix34Translate ()

Description: Set the specified matrix to a matrix representing a specific translation.
Equivalent to:

M < =

xXyz —

S O =
S = O

0 O
0 O
I 0
5, 8,8, 1

Declaration: void BrMatrix34Translate (br _matrix34* mat, br_ scalar dx,
br_scalar dy, br_scalar dz)

Arguments: br_matrix34 * mat
A pointer to the destination matrix.
br scalar dx

Translation component along the x axis.

br_scalar dy

Translation component along the y axis.

br scalar dz
Translation component along the z axis.

See Also: BrMatrix34PreTranslate() ,;, BrMatrix34PostTranslate () ;.

Copyright © 1996 Argonaut Technologies Limited 2 1 1

br_matrix34

BrMatrix34Scale ()
Description: Set the specified matrix to a matrix representing a specific scaling. Equivalent to:
.0 0 0
0 s, O

M&S,,, = Y
0 0 s,

0 0 0

S

0
0
1

Declaration: void BrMatrix34Scale (br matrix34* mat, br scalar sx,
br_scalar sy, br_scalar sz)

Arguments: br_matrix34 * mat
A pointer to the destination matrix.
br scalar sx
Scaling component along the x axis.
br_scalar sy
Scaling component along the y axis.
br scalar sz
Scaling component along the z axis.

See Also: BrMatrix34PreScale (), BrMatrix34PostScale () ;.

BrMatrix34ShearX()

Description: Set the specified matrix to a matrix representing a shear, invariant along the x axis.
Thus values of y and z co—ordinates will be scaled in proportion to the value of the
x co-ordinate. Equivalent to:

18, 8. 0
Mez,=| 01 00
00 10
00 0 1

Declaration: void BrMatrix34ShearX(br_matrix34* mat, br_scalar sy,
br scalar sz)

2 1 2 Copyright © 1996 Argonaut Technologies Limited

br_matrix34

Arguments: br_matrix34 * mat
A pointer to the destination matrix.
br_scalar sy

Shear factor by which the x co-ordinate is included in the transformed y co-
ordinate.

br scalar sz

Shear factor by which the x co-ordinate is included in the transformed z co-
ordinate.

See Also: BrMatrix34PreShearX() ., BrMatrix34PostShearX () .

BrMatrix34ShearY ()

Description: Set the specified matrix to a matrix representing a shear, invariant along the y axis.
Thus values of x and z co—ordinates will be scaled in proportion to the value of the
y co-ordinate. Equivalent to:

M&Z,=

S = O

1 0 O
o, o, 0
0 1 0

1

0 0 O

Declaration: void BrMatrix34ShearX (br_matrix34* mat, br_scalar sx,
br_scalar sz)

Arguments: br_matrix34 * mat
A pointer to the destination matrix.
br scalar sx

Shear factor by which the y co-ordinate is included in the transformed x co-
ordinate.

br scalar sz

Shear factor by which the y co-ordinate is included in the transformed z co-
ordinate.

See Also: BrMatrix34PreShearY (), BrMatrix34PostShearY () .

Copyright © 1996 Argonaut Technologies Limited 2 1 3

br_matrix34

BrMatrix34ShearZ ()

Description: Set the specified matrix to a matrix representing a shear, invariant along the z axis.
Thus values of xand y co-ordinates will be scaled in proportion to the value of the
z co-ordinate. Equivalent to:

1
M«&Z. = 0
(¢)

Q = <
— O O

x y

0 0 O

Declaration: void BrMatrix34ShearX (br_matrix34* mat, br_scalar sx,
br_scalar sy)

0
0
0
1

Arguments: br_matrix34 * mat
A pointer to the destination matrix.
br_scalar sx
Shear factor by which the z co-ordinate is included in the transformed x co-
ordinate.

br_scalar sy

Shear factor by which the z co-ordinate is included in the transformed y co-
ordinate.

See Also: BrMatrix34PreShearZ (), BrMatrix34PostShearZ () .

BrMatrix34RotateX()

Description: Set the specified matrix to a matrix representing a rotation about the x axis though
a specified angle. Equivalent to:

1 0 0 0
MR, = 0 cosBy sinBy O
¥ 1 0 —sin®, cosBy 0

0 0 0 1

Declaration: void BrMatrix34RotateX (br_matrix34* mat, br_angle rx)

2 1 4 Copyright © 1996 Argonaut Technologies Limited

br_matrix34

Arguments: br_matrix34 * mat
A pointer to the destination matrix.
br_angle rx
Rotation about the x axis.

See Also: BrMatrix34PreRotateX(),y, BrMatrix34PostRotateX () ;.

BrMatrix34RotateY ()

Description: Set the specified matrix to a matrix representing a rotation about the y axis though
a specified angle. Equivalent to:
cosO, 0 -sinB, O
0 1 0 0
sin@, 0 cosB®, O
0O O 0 |

Declaration: void BrMatrix34RotateX (br_matrix34* mat, br_angle ry)

M <Ry

Arguments: br_matrix34 * mat
A pointer to the destination matrix.
br_angle ry
Rotation about the y axis.

See Also: BrMatrix34PreRotateY (),,, BrMatrix34PostRotateY () .

BrMatrix34RotateZ ()

Description: Set the specified matrix to a matrix representing a rotation about the z axis though
a specified angle. Equivalent to:

cos®, sinB, O

M<:RGZE
0 0 1

0 0 O

Declaration: void BrMatrix34RotateZ (br_matrix34* mat, br_angle rz)

0
—sin@, cos6, 0 O
0
1

Copyright © 1996 Argonaut Technologies Limited 2 1 5

br_matrix34

Arguments: br_matrix34 * mat
A pointer to the destination matrix.
br_angle rz
Rotation about the z axis.

See Also: BrMatrix34PreRotateZ (),,, BrMatrix34PostRotateZ () .

BrMatrix34Rotate ()

Description: Set the specified matrix to a matrix representing a rotation about a given axis vector
though a specified angle. Equivalent to:

M <Ry

Declaration: void BrMatrix34Rotate (br_matrix34* mat, br_angle r,
const br vector3* a)

Arguments: br_matrix34 * mat
A pointer to the destination matrix.
br_angle r
Rotation about the specified axis vector.
const br vector3 * a
The arbitrary (normalised) axis vector about which the rotation occurs.

See Also: BrMatrix34PreRotate (), BrMatrix34PostRotate () .

2 1 6 Copyright © 1996 Argonaut Technologies Limited

br_matrix4

br matrix4

The Structure

A four column, four row, scalar array, used as a 3D affine matrix for general purpose 3D
transformations (translation, scaling, shearing, rotation). Functions are provided to allow it be used as
though it were an integral type. It has the following form:

It can be noted that the bottom row has a translational effect. Also note, that the matrix determinant
represents the volume change effected.

The typedef

(See matrix.h for precise declaration and ordering)
br_scalar m[4][4] Four rows of four columns

Related Functions

Image Support

See BrActorToScreenMatrix4 ().

Maths

See BrEulerToMatrix4 () ,, BrQuatToMatrix4 () ,,, BrMatrix34Copy4 () -

Related Structures

See br_matrix34,,, br_renderbounds_cbfn,,..

Members

br scalar m[4][4]

Each element of the matrix can be freely and individually accessed.

This matrix can also be thought of as an array of four br_vector4,, structures, e.g. br_vector4
m([4]. Thusm[row] can be cast as (br_vector4d*).

Copyright © 1996 Argonaut Technologies Limited 2 1 7

br_matrix4

Arithmetic

BrMatrix4Mul ()

Description: ~ Multiply two matrices together and place the result in a third matrix. Equivalent to
the expression:

A < BC

Declaration: void BrMatrix4Mul (br matrix4* A, const br matrix4* B,
const br_matrix4* C)

Arguments: br_matrix4 * A
A pointer to the destination matrix (must be different from both sources).
const br _matrix4 * B
Pointer to the left hand source matrix.
const br _matrix4 * C
Pointer to the right hand source matrix.

Remarks: Theresultin A is equivalent to the following:

(
| boo bor Doy b €0 o1 €02 €03
by by by by o “n ‘2 Ci3 | o
byy by by by €0 €2 Cn Cn3
(b3 b3 by by C0 €1 €3 O3

booCoo +bor€10+ boaCan + Loscao LooCor + borCin +boaCa +bo3Csy LonCor+orC€iat boaCan +bo3Cs, bogCos + o1 €13+ bonCas + boscsy

bioCoo+b11€io+ binCon +D13¢3g DigCor +byiCpy +h1aCy Hh13cs, bigCoyt by Cp by thisey, bgcgy by €3t bipeysbyses,
b
b

20C00 + D21C10+ DonCog+ by3Cyg bygCop + by ¢y +bynCoy +byscs bygCoy + by Cpy+byyCoy +byse, bygCoy+ by Ci3+byycpy+bysen,

30C00 T D31€10 + D3nCag + b33y bagCoy +byyCyy by +bysey bygCoy by €+ by +bysey, bygCoy+ byjciy+ byycpy + bysen,

P

See Also: BrMatrix4Pre34 ()., BrMatrix4PreTransform() ,,

BrMatrix4Inverse ()

Description: ~ Compute the inverse of the supplied 3D affine matrix. Equivalent to the
expression:

A=B"

Declaration: br scalar BrMatrix4Inverse (br matrix4* A,
const br_matrix4* B)

Arguments: br_matrix4 * A
A pointer to the destination matrix (must be different from source).
const br matrix4 * B

A pointer to the source matrix.

2 1 8 Copyright © 1996 Argonaut Technologies Limited

br_matrix4

Result: br_scalar

If the inverse exists, the determinant of the source matrix is returned. If there is no
inverse, scalar zero is returned.

Remarks: ~ Remember that while an inverse may be obtained using double precision
arithmetic, this does not necessarily mean that it can using thebr_scalar,,, type.
This difference is most marked between fixed and floating point BRender libraries.

See Also: BrMatrix4Adjoint (), BrMatrix4Determinant () ,,.

BrMatrix4Apply ()

Description: Applies a transform to a 3D point which may have non-unity homogenous co-
ordinates. Equivalent to the expression:

PA = PBC
Declaration: void BrMatrix4Apply (br_vectord* A, const br_vectord* B,
const br matrix4* C)
Arguments: br_vector4 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed point.

const br vector4 * B

A pointer to the source vector, holding the point to be transformed.

const br matrix4 * C

A pointer to the transform matrix to be applied.

Remarks: Theresultin A is equivalent to the following:

("B Yp % WB) =

(*pCoo T YpC10+ 2pC20 TWpC30 XpCo1 T YpC11 T 2pCa T WECa XpCon v YpCia T IpCant WpCs XpCo3 T VpCi3tigtazt WBC33J

BrMatrix4ApplyP ()
Description: Applies a transform to a 3D point. Equivalent to the expression:
P, < BC

Declaration: void BrMatrix4ApplyP (br_vector4* A, const br_ vector3* B,
const br matrix4* C)

Copyright © 1996 Argonaut Technologies Limited 2 1 9

br_matrix4

Arguments:

Remarks:

br vectord4d * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed point.

const br vector3 * B

A pointer to the source vector, holding the point to be transformed.
const br matrix4 * C

A pointer to the transform matrix to be applied.

The result in A is equivalent to the following:

o1 2 ‘o3
1) €10 ‘nu ‘2 ‘3
€0 € €2 3

€3 €31 3 C33

+ZpCyo T C30 ¥pCo1 T YpC11 T 2pCa T €31 XpCon T YpCra T 2pCan t C3p XpCozt YpCiztiplos t 633)

BrMatrix4ApplyV ()

Description:

Declaration:

Arguments:

Remarks:

220

Applies a transform to a 3D vector, i.e. as for a point but without translation
components (a vector has no location). Equivalent to the expression:

v, &= vC

void BrMatrix4ApplyV (br_vector4* A, const br_vector3* B,
const br_matrix4* C)

br_vector4 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed vector.

const br vector3 * B

A pointer to the source vector, holding the vector to be transformed.

const br_matrix4 * C

A pointer to the transform matrix to be applied.

The result in 2 is equivalent to the following:
) o ‘n ‘2 Ci3 | _
Xg Yg 75 O =

(XpCoo+ YgC10 T ZpC20 *pCor T YpC11 +t2pCar XpCoat V€12t g ¥pCo3tYpCizt Z13"23)

Copyright © 1996 Argonaut Technologies Limited

br_matrix4

BrMatrix4TApply ()

Description:

Declaration:

Arguments:

Remarks:

Applies a transform to a transposed 3D point which may have non-unity
homogenous co-ordinates. Equivalent to the expression:

P, = P,C'

void BrMatrix4TApply (br_vector4* A, const br_ vector4* B,
const br matrix4* C)

br vectord4 * A

A pointer to the destination vector (must be different from source), to hold the
transformed point.

const br vector4 * B

A pointer to the source vector, holding the point to be transformed.
const br matrix4 * C

A pointer to the transform matrix to be applied transposed.

The result in A is equivalent to the following:

Coo Co1 Co2 Cos Xp CooXp T Co1Yp + Clp + Co3Wp
Cio €11 Cn Cp3 Yp | _| Cio¥p T CnYpt CraZpt Ci3Wp
Cy €1 Cpp Cp3 Zp CooXp T C1Yp + Cpplp+ Cp3Wp
C3 €31 C3;» C33 Wg C30Xp T C31Yp T C322p + C33Wp

BrMatrix4TApplyP ()

Description:

Declaration:

Arguments:

Applies a transposed transform to a 3D point. Equivalent to the expression:

P, = P,C'

void BrMatrix4TApplyP (br_vectord4* A, const br_vector3* B,
const br_matrix4* C)

br vectord4 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed point.

const br vector3 * B

A pointer to the source vector, holding the point to be transformed.

const br matrix4 * C

A pointer to the transform matrix to be applied transposed.

Copyright © 1996 Argonaut Technologies Limited 2 2 1

br_matrix4

Remarks: Theresult in A is equivalent to the following:

Coo Co1 Co2 Co3 Xp CooXp t Co1Yp + Conlp + Co3
Cio ¢ €12 €13 Y || Clo¥p T CnYp+ CraZpt i3
Cx €21 € Cp3 Zp CooXp + C21Yp + CnZp + C3
C3 €31 C3 C33 1 C30Xp + C31Yp + C322p + C33

BrMatrix4TApplyV ()

Description: Applies a transposed transform to a 3D vector, i.e. as for a point but without
translation components (a vector has no location). Equivalent to the expression:

t
VA = VBC
Declaration: void BrMatrix4TApplyV (br_vector4* A, const br_vector3* B,
const br matrix4* C)
Arguments: br_vector4 * A

A pointer to the destination vector (must be different from source, and not part of
transform), to hold the transformed vector.

const br_vector3 * B

A pointer to the source vector, holding the vector to be transformed.
const br matrix4 * C

A pointer to the transform matrix to be applied transposed.

Remarks: Theresult in A is equivalent to the following:

Coo Co1 Co2 Co3 Xp CooXp + Co1Yp + C2lp
Cio 11 €12 €13 Yp | _| C10%8* CuYp+ CiaZp
Cx €21 Cxp Cp3 Zp CooXp + C21Yp + CZp
C3 €31 €3 C33 0 C30Xp + C31Yp T C302p

BrMatrix4Pre34 ()

Description: ~ Pre-multiply one matrix by another. Equivalent to the expression:
A < BA

Declaration: void BrMatrix4Pre34 (br_matrix4* A, const br _matrix34* B)

2 2 2 Copyright © 1996 Argonaut Technologies Limited

br_matrix4

Arguments: br_matrix4 * A
A pointer to the subject matrix (may be same as B).
const br matrix34 * B
A pointer to the pre-multiplying matrix.

Remarks: Theresultin 2 is equivalent to the following:

by, 0 oo o1 %o o3

by, 0 dip 4 G 443 =

by 0 Ayy Ay Gy Ay

by, 0 a3z A3 Az ds

1910+ boadg bogag; +bgay; +bgdy, bogagy + by @13 + by, boodgs + bg @3+ bpdys
1410+ b1adg bygag +byyay +bpay bigagy +by1a15 +bpay, bigagy + b3+ bypay
1410+ by bygagy + by +bydy, bygagy + by @1y + by, bygdgs + by 3+ byays

1910 Fbyptng +azy bygag + D31y, + by ay bygagy +byag, +byyan +ay, bygdgy+ by a3+ byay +ag

See Also: BrMatrix4Mul () ,;.

BrMatrix4PreTransform()

Description: ~ Pre-multiply a matrix by a generic transform. Equivalent to the expression:
M < M;M

Declaration: void BrMatrix4PreTransform(br matrix4* mat,
const br_transform* xform)

Arguments: br_matrix4 * mat
A pointer to the subject matrix.
const br_ transform * xform
The pre-multiplying generic transform.

Effects: The transform is first converted to a general 3x4 transform matrix using
BrTransformToMatrix34 (),; and then applied as a pre-multiplying matrix
using BrMatrix4Pre34 () ,,.

BrMatrix4Adjoint ()

Description: Find the adjoint of a matrix — the transposed matrix of co-factors. Equivalent to the
expression:

A < Adjoint(B)

Declaration: void BrMatrix4Adjoint (br_matrix4* A, const br_matrix4* B)

Copyright © 1996 Argonaut Technologies Limited 2 2 3

br_matrix4

Arguments: br_matrix4 * A
A pointer to the destination matrix (may be same as source).
const br matrix4 * B
A pointer to the source matrix.

See Also: BrMatrixd4Inverse () ;.

BrMatrix4Determinant ()

Description: ~ Calculate the determinant of a matrix. Equivalent to the expression:
M|
Declaration: br_ scalar BrMatrix4Determinant (const br matrix4* mat)
Arguments: const br_matrix4 * mat
A pointer to the source matrix.
Result: br_scalar
The determinant of the source matrix.

See Also: BrMatrixdInverse () ;.

Conversion

From Eulers and Quaternions

See BrEulerToMatrix4 () ,, BrQuatToMatrix4 () ,,.

To Eulers and Quaternions

See BrMatrix4ToEuler () ,,, BrMatrix4ToQuat () ,,; as described below.

BrMatrix4ToEuler ()

Description: ~ Converta 3D affine matrix to a Euler angle set, that would have the same rotational
effect.

Declaration: br euler* BrMatrix4ToEuler (br euler* euler,
const br matrix4* mat)

2 2 4 Copyright © 1996 Argonaut Technologies Limited

br_matrix4

Arguments: br_euler * euler

A pointer to the destination Euler angle set to receive the conversion. The Euler
angle set’s Euler order is used to determine each angle.

const br matrix4 * mat

A pointer to the source matrix to convert from.
Result: br_euler *

Returns euler for convenience.

Remarks: Translation and projective (fourth column) components of the matrix are lost in
conversion.

BrMatrix4ToQuat ()

Description: ~ Convert a 3D affine matrix to a quaternion, that would have the same rotational
effect.

Declaration: br_quat* BrMatrix4ToQuat (br_quat* g, const br_matrix4* mat)
Arguments: br_quat * g
A pointer to the destination quaternion to receive the conversion.
const br matrix4 * mat
A pointer to the source matrix to convert from.
Result: br_quat * g
Returns g for convenience.

Remarks: Translation and projective (fourth column) components of the matrix are lost in
conversion.

Copy/Assign

Although copy by structure assignment currently works, use BrMatrix4Copy () ,,;s to ensure
compatibility.

BrMatrix4Copy ()

Description: Copy a matrix. Equivalent to the expression:
A<B

Declaration: void BrMatrix4Copy (br_matrix4* A, const br_matrix4* B)

Copyright © 1996 Argonaut Technologies Limited 2 2 5

br_matrix4

Arguments:

br matrix4 * A

A pointer to the destination matrix (may be the same as source — though
redundant).

const br matrix4 * B

A pointer to the source matrix.

BrMatrix4Copy34 ()

Description:

Declaration:

Arguments:

Effects:

See Also:

Copy a 3x4 matrix into a 4x4 matrix. Equivalent to the expression:

A<=B

void BrMatrix4Copy34 (br_matrix4* A, const br matrix34* B)
br matrix4 * A

A pointer to the destination matrix.

const br matrix34 * B

A pointer to the source 3x4 matrix.

The source is copied into the destination, and the fourth column of the destination
is set to the implicit (0,0,0,1) column vector.

BrMatrix34Copy4 () .-

Referencing & Lifetime

This structure may be freely referenced, though take care if there is potential to supply the same
matrix as more than one argument to the same function.

Initialisation

No static initialisers are provided. However, four BR_VECTOR4 () macros would serve as well.

All other initialisation should use BrMatrix4Copy () s or any of the following initialisation

functions.

226

Copyright © 1996 Argonaut Technologies Limited

br_matrix4

BrMatrix4Identity ()

Description:

Declaration:

Arguments:

Effects:

M<l=

Set the specified matrix to the identity transformation matrix. Equivalent to:

1 0
0 1
00 0
0 0 01

0

- O O

void BrMatrix4Identity (br_matrix4* mat)

br matrix4 * mat

A pointer to the destination matrix.

Stores the identity matrix at the destination.

BrMatrix4Scale ()

Description:

Declaration:

Arguments:

M«&S,, . = Y

Set the specified matrix to a matrix representing a specific scaling. Equivalent to:

5.0 0 0
0O s, O
xyz —

0 0 =,
0 0 O

0
0
1

void BrMatrix4Scale (br _matrix4* mat,

br_scalar sy, br_scalar sz)
br_matrix4 * mat

A pointer to the destination matrix.

br_scalar sx

Scaling component along the x axis.

br_scalar sy

Scaling component along the y axis.

br_scalar sz

Scaling component along the z axis.

Copyright © 1996 Argonaut Technologies Limited

br scalar sx,

227

br_matrix4

BrMatrix4Perspective ()

Description:

Declaration:

Arguments:

Effects:

Remarks:

228

1
COtia
e 0 0
aspect
1
0 cot50 0 0
M < Perspective =
Z + Zp;
0 0 yon hither -1
Zyon ~ Zhither
_2Zyon Zhither
0 0 —_— 0

Generate a perspective transformation matrix, that can be used to convert from a camera
actor’s co-ordinate space into the homogenous screen space (assuming a centred
projection). This maps the viewing volume into the rendering volume, a cuboid
delimited by the homogenous screen co-ordinates (left, bottom, near) (-1,-1,+1) to
(+1,+1,-1). The matrix created is equivalent to the following (a=field of view).

Zyon ~ Zhither

void BrMatrix4Perspective (br_matrix4* mat,
br_angle field of view, br_scalar aspect, br_scalar hither,
br_scalar yon)

br matrix4 * mat

A pointer to the destination matrix to receive the perspective transform.
br_angle field of view

Field of view, i.e. the angle subtended at the camera between the top and bottom
of the view volume.

br_scalar aspect

Scaling factor for width of viewing volume, i.e. =1 in y view ordinates is mapped to
the height of the output image, and taspect inx view ordinates is mapped to the
width of the output image.

br scalar hither

z ordinate of front of view volume. The value should be less than zero.
br_scalar yon

z ordinate of back of view volume. The value should be less than hither.
Calculates the camera to screen transformation matrix and stores it at mat.

Note that hither and yon are of opposite sign to the comparable values of
hither_z andyon_z thatwould be specified inbr_camera,,,. This is because
they are ordinates as opposed to distances.

Note that the front clip plane is at a homogenous screen z ordinate of -1.

Copyright © 1996 Argonaut Technologies Limited

br_matrix4

See Also: br_camera,,, BrActorToScreenMatrix4 ().

Copyright © 1996 Argonaut Technologies Limited 2 2 9

br_matrix4

2 3 O Copyright © 1996 Argonaut Technologies Limited

br_mode_test_cbfn

br mode test cbfn

The Call-Back Function

This type defines a mode test function, as required by BrFileOpenRead () .

The typedef

(See brfile.h fora precise declaration)
int br_mode_test_cbfn(const br_uint_8%*, br_size_t) Testfile’s mode

Specification

CBFnModeTest ()

Description: ~ An application defined call-back function determining the type of a file from a
given number of characters (specified with the call-back function) from the start
of the file.

Declaration: int BR_CALLBACK CBFnModeTest (const br_uint_8%* magics,
br_size_t n_magics)

Arguments: const br_uint_8 * magics
Pointer to n_magics characters.
br_size_t n_magics
Number of characters pointed to.
Effects: Interpret the characters and determine the mode of the file (or file type).
Result: int

If the file is binary return BR_FS_MODE_BINARY, if text return
BR_FS_MODE_TEXT, otherwise return BR_FS_MODE_UNKNOWN.

Copyright © 1996 Argonaut Technologies Limited 2 3 1

br_model

br model

The Structure

BRender’s model data structure, describing a mesh of triangles.

The typedef

(See model.h for precise declaration and ordering)

Behaviour

br_uint_16 flags Model flugs
br_model_custom_cbfn * custom A custom model call-back function
Geometry

br_vertex * vertices A pointer to an array of vertices
br_uint_16 nvertices Number of vertices in the model
br_face * faces A pointer to an array of faces
br_uint_16 nfaces Number of faces in the model
br_vector3 pivot Offset of model’s pivot point

Computed Geometry

br_scalar radius The bounding radius of the model
br_bounds bounds The axis-aligned bounding box of the model
Supplementary

char * identifier Model name

void * user An optional user-supplied pointer
Related Functions

Scene Rendering
See Br[zblZs]ModelRender () 5535
Related Structures

Scene Modelling

See br_actor,, br_material,,, br_face,,;, br_vertex,,.

Scene Rendering

See br_renderbounds_cbfn;,;, br_model_custom_cbfn,,.

2 3 2 Copyright © 1996 Argonaut Technologies Limited

br_model

Members
Behaviour
br_uint_16 flags

This member determines how the model’s geometry is computed. Various flags can be combined
using the ‘Or’ operation. They’re described in the following table.

Flag Symbol Behaviour

BR_MODF_KEEP_ORIGINAL | Retainoriginal vertices and faces during model update —otherwise these are freed
and replaced by an optimised and equivalent set (very likely reordered)

BR_MODF_GENERATE_TAGS | Improve update speed at the expense of face and vertex tag tables. Only use in
conjunction with BR_MODF_KEEP_ORIGINAL

BR_MODF_QUICK_UPDATE |Improve update speed at the expense of having models that may take longer to render

BR_MODF_DONT_WELD Don’t eliminate redundant vertices (having identical co-ordinates)

BR_MODF_CUSTOM Invoke a custom call-back for this model

br model custom _cbfn * custom

If the BR_MODF_cusToM flag is specified, instead of being rendered, the function pointed to by
custom is called. This may of course then call BrZbModelRender () ,s;, say. See
br_model_custom_cbfn,,,.

Geometry

br vertex * wvertices

A list of vertex structures describing the model’s geometry (also containing texture co-ordinates and
pre-lighting). The vertices can be allocated at the same time as the model, otherwise vertices
should point to a list with a sufficient lifetime (and BR_MODF_KEEP_ORIGINAL must be set).

br uint_ 16 nvertices

Number of vertices supplied in the list of vertices.

br face * faces

A list of face structures describing the model’s surface in terms of its vertices (also containing
smoothing information, edge flags, and materials). The faces can be allocated at the same time as the
model, otherwise faces should point to a list with a sufficient lifetime (and
BR_MODF_KEEP_ORIGINAL must be set).

Copyright © 1996 Argonaut Technologies Limited 2 3 3

br_model

br uint 16 nfaces

Number of faces supplied in the list of faces.

br_vector3 pivot

Offset from model geometry origin to model origin. Effectively an offset which is subtracted from
each model vertex. Alternatively, it may be thought of as a vector in the model’s co-ordinate space
defining the point at which the model attaches to its parent (assuming an identity transform).

This member is provided to facilitate centring geometry (thus not needing to modify vertex data),
and thus enables such things as tighter bounding radii. It is not really intended to supplement the
model actor transform, i.e. as another way of translating models.

Computed Geometry

br scalar radius

The maximum vertex length, thus the radius defining the smallest origin centred sphere enclosing
the model. This is computed upon BrModelAdd (),, and when the BR_MODU_RADIUS flag is
specified to BrModelUpdate () ..

br_ bounds bounds

The minimum and maximum x,y and z ordinates of the vertices, thus the minimal, axis aligned
(orthogonal faced) cuboid enclosing the model. This is computed upon BrModelAdd () ,,, and when
the BR_MODU_BOUNDING_BOX flag is specified to BrModelUpdate () ,;-

Supplementary

char * identifier

Pointer to unique, zero terminated, character string (or NULL if not required). Can be used as a handle
to retrieve a pointer to the model. Not intended for intensive use. Typically used to collect pointers
to models loaded using BrModelLoad () ,,; and added to the registry using BrModelAdd () ,4 Also
ideal for diagnostic purposes.

A non-unique string can be supplied, but which of a set of models having the same string will be
matched by search functions (See BrModelFind(),,,), is undefined. Also in consideration of
searching, it is not recommended that non-alphabetic characters are used, especially Slash (‘/),
Asterisk (‘*’), and Query (‘?’), which are used for pattern matching.

This member can be modified by the programmer at any time.

If identifier is set by BrModelLoad () ,,, or BrModelLoadMany (),,; it will have been
constructed using BrResStrDup () 4.

2 3 4 Copyright © 1996 Argonaut Technologies Limited

void * user

br_model

A member whose usage is entirely application dependent. It can be useful when writing custom
model rendering functions (seec br_model_custom_cbfn,,).

Operations

BrModelPick2D ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Casts a ray into a model and calls a call-back for all faces that intersect the ray.
This can be used in conjunction with BrScenePick2D () 4 to give face/edge/
vertex picking.

int BrModelPick2D (br_model* model,

const br _material* material, const br_vector3* ray pos,
const br_vector3* ray_dir, br_scalar t_near,

br_scalar t_far, br_modelpick2d_cbfn* callback, void* arg)

br model * model

Non-NULL pointer to model.

const br material * material
Non-NULL pointer to model’s default material.

const br_vector3 * ray_pos

Non-NULL pointer to a 3D vector giving a starting position of a pick ray in the
model’s co-ordinate space.

const br_vector3 * ray_dir
Non-NULL pointer to a 3D vector giving the direction of the pick ray.

br_scalar t_near, t_far

Coefficients of ray_dir defining the section of the ray that should be
considered. Intersections outside this section are ignored. t_near should be
less than t_far.

br_modelpick2d _cbfn * callback

Non-NULL pointer to call-back function to be called for each face intersecting
the specified ray section.

void * arg

An optional argument to pass to the call-back function.

Between BrBegin () ,, and BrEnd () ;;. BRender has completed initialisation.
The specified model and material have been updated.

The model’s geometry is scanned to find faces that intersect the specified ray
section. The supplied call-back is called for each intersecting face.

Copyright © 1996 Argonaut Technologies Limited 2 3 5

br_model

Result: int

If the call-back returns a non-zero value, traversal halts and that value is
returned. Otherwise, zero is returned.

Remarks: This function is typically used within BrScenePick2D () 4 to refine selection

further down to the face level. Perspective texture co-ordinates are also
available to provide such things as 3D texture editing, or surface controls.

Example: The following code gives an example of call-backs that enable changing the

236

material assigned to a face of a (non-inherited) model under a particular screen
pixel.

int BR_CALLBACK MyPickNearestModelCallback (br_model* model, const
br_material* material, const br_vector3* ray_pos, const
br_vector3* ray_dir, br_scalar t, int f,int e, int v, const
br_vector3* p, const br_vector2* map, my_pick_nearest* pn)

{ if (t<pn->t)/* has its own model & nearer */

{ pn->t=t;
pn->actor=pn->temp_actor;
pn->model=model;
pn->material=material;
pn->point=*p;
pn->face=f;
pn->edge=e;
pn->vertex=v;
pn->map=*map;

}

return 0;

/* Test callback */

int BR_CALLBACK MyPickNearestCallback (br_actor* actor, const
br_model* model, const br_material* material, const br_vector3*
ray_pos, const br_vector3* ray_dir, br_scalar t_near,
br_scalar t_far, my_pick_nearest* pn)

{ pn->temp_actor=actor;
if (actor->model)

BrModelPick2D (actor->model, material, ray_pos, ray_dir,
t_near, t_far, MyPickNearestModelCallback, pn);

return 0;

BrScenePick2D (test_world, observer, back_buffer, PickCursor_X,
PickCursor_Y, MyPickNearestCallback, &PickNearest);

if (PickNearest.model)

{ PickNearest.model—-
>faces[PickNearest.face] .material=pick_material;

BrModelUpdate (PickNearest.model, BR_MODU_ALL) ;

Copyright © 1996 Argonaut Technologies Limited

See Also:

br_model

BrScenePick2D () g

BrModelApplyMap ()

Description:

Declaration:

Arguments:

Generate texture co-ordinates (u,v) for a model’s vertices, using a planar,
spherical, cylindrical, disc or null mapping. The model’s vertices can be pre-
transformed by an optional matrix.

void BrModelApplyMap (br_model* model, int map_type,
const br_matrix34* xform)

br model * model
A pointer to a model.
int map_type

Mapping type. This determines how a texture is wrapped around a model. Each
type is described in the following table.

Map Type Symbol Mapping | Texture Co-ordinates (u,v)

BR_APPLYMAP_NONE None (O O)
BR_APPLYMAP_PLANE Planar 1 1
Gx+1) s(y+1))
BR_APPLYMAP_DISC Disc | 2 >
(szarctan—= NXT+YT)

BR_APPLYMAP_CYLINDER [Cylindrical

(%tarctan}f‘ %(y +1))

BR_APPLYMAP_SPHERE Spherical

1 —x 1 y
(;@rctan; 1- ,—Tarctan——m—)

A/xz + Zz

See Also:

The disc mapping can be visualised by considering a cylindrical mapping, but
shrinking one end of the cylinder to a point and then flattening it to form a disc.

The cylindrical mapping, predictably, can be visualised by imagining a texture
wrapped around the outside of a cylinder. The spherical mapping is similar to a
cylindrical mapping, but the ends of the cylinder are shrunk to single points.

const br matrix34 * xform
A pointer to an optional matrix. If NULL, the identity transformation is used.
BrModelFitMap () 35

Copyright © 1996 Argonaut Technologies Limited 2 3 7

br_model

BrModelFitMap ()

Description:

Declaration:

Arguments:

Result:

See Also:

Generate a transformation which will map the bounds of a model onto a cube
defined by the corner co-ordinates (-1,-1,-1) and (1,1,1). When passed to
BrModelApplyMap () ,35, texture co-ordinates will be generated which fit the
model exactly. The two axes along which the mapping is applied must be
specified.

br matrix34* BrModelFitMap (const br_model* model,
int axis_0, int axis_1, br_matrix34* transform)

const br model * model
A pointer to a model.
int axis_0, axis_1

Mapping axes, defined as follows:

Mapping Axis Mapping is Applied
Symbol Along

BR_FITMAP_PLUS_X Positive x axis

BR_FITMAP_PLUS_Y Positive y axis

BR_FITMAP_PLUS_Z Positive z axis

BR_FITMAP_MINUS_X |Negative x axis

BR_FITMAP_MINUS_Y |Negative y axis

BR_FITMAP_MINUS_Z |Negative z axis

br matrix34 * transform
A pointer to the destination transformation matrix.
br matrix34 *

Returns a pointer to the destination transformation matrix as supplied (for
convenience).

BrModelApplyMap () ;5

BrSceneModelLight ()

Description:

Declaration:

238

Generate prelit lighting values for the vertices of a given model, using the
current rendering’s lighting set-up.

void BrSceneModellight (br_model* model,
const br_material* default_material, const br_actor* root,
const br_actor* a)

Copyright © 1996 Argonaut Technologies Limited

br_model

Arguments: br_model * model

Non-NULL pointer to model to calculate prelit values for.

const br material * default_material

Non-NULL pointer to default material to use for model.

const br actor* root

Pointer to root actor of scene, e.g. as supplied to

BrZbSceneRenderBegin () ;. If this function is called from within a custom
model call-back, NULL may be used to indicate that the root effective for the
current actor is to be used.

const br actor* a

Pointer to actor defining the required co-ordinate space for the model to be
prelit. If this function is called from within a custom model call-back, NULL may
be used to indicate that the current actor should is to be used.

Preconditions: ~ Between BrBegin () ,, and BrEnd () ;,. Currently rendering, e.g. between
BrZbSceneRenderBegin () ;; and BrZbSceneRenderEnd () ;.

Effects: Works out lighting for the supplied model as though it were attached to the
supplied actor. Modifies the appropriate prelit members of each vertex in
accordance with the model and its material.

Remarks: Generally useful for scenes having little change in lighting. Lights may be
enabled for the first frame, this function called to pre-light various models and
then most or all lighting disabled for performance in subsequent frames. Note
that each model whose vertices are so set will need a BrModelUpdate () ,,,
applied before the next rendering.

See Also: br_vertex,,

Copy/Assign

The br_model,,, structure should not be copied directly, e.g. by structure assignment. If a similar
model is required, a new one should be allocated and pertinent members copied individually. Do not
copy vertex and face lists by reference unless you have allocated them yourself. Care may be needed
in copying identifier.

Access & Maintenance

Models must be added to the registry if they are involved in rendering a scene. They should not be
modified during rendering.

Models that have been added to the registry may be accessed by BRender during rendering.

If any changes are made to models involved in rendering, they must be updated before the next
rendering in which they are involved.

Copyright © 1996 Argonaut Technologies Limited 2 3 9

br_model

BrModelAdd ()

Description:

Declaration:

Arguments:

Result:

See Also:

Add a model to the registry, updating it as necessary. All models must be added
to the registry before they are subsequently involved in rendering.

br model* BrModelAdd (br_ model* model)

br model * model

A pointer to a model.

br_model *

Returns a pointer to the added model, else NULL if unsuccessful.

BrModelUpdate () ,,, BrModelAddMany () ,,, BrModelLoad () ,,;,
BrModelFind () ,,, BrModelRemove () ;.

BrModelAddMany ()

Description:
Declaration:

Arguments:

Result:

See Also:

240

Add a number of models to the registry, updating them as necessary.

br_uint_32 BrModelAddMany (br_model* const* models, int n)

br _model * const * models

A pointer to an array of pointers to models.

int n

Number of models to add to the registry.

br uint_32

Returns the number of models added successfully.

BrModelUpdate () ,,, BrModelAdd () ,4, BrModelRemove () 5,

BrModelRemoveMany () .,

Copyright © 1996 Argonaut Technologies Limited

br_model

BrModelUpdate ()

Description: ~ Update a model that has changed in some respect since the previous update of
this model (or BrModelAdd () ,,)-
Declaration: void BrModelUpdate (br_model* model, br_uint 16 flags)
Arguments: br_model * model
A pointer to a model.
br_uint_16 flags
Model update flags. In general, BR_MODU_ALL should be used. However, the
following table describes when to use more specific update flags. Note that
flags can be combined using the ‘Or’ operation (BR_MODU_ALL issucha
combination of the other flags, for your convenience).
Update Flag When to Use
Symbol

BR_MODU_VERTICES| Any aspect of vertices changes, including: vertex co-ordinates, the number

of vertices, pre-lighting values, texture co-ordinates

BR_MODU_FACES Any aspect of faces changes, including: the set of vertices used by all faces,

a face’s vertex order, a face’s set of vertices, a face’s smoothing group or
flags, the number of faces

BR_MODU_MATERIAL| A face’s material pointer changes

S
BR_MODU_ALL An unknown or wholesale change occurs
See Also: BrModelAdd () ,,.

BrModelRemove ()

Description:
Declaration:
Arguments:

Result:

See Also:

Remove a model from the registry.

br_model* BrModelRemove (br model* model)
br_model * model

A pointer to a model.

br model *

Returns a pointer to the model removed.

BrModelAdd () ,

Copyright © 1996 Argonaut Technologies Limited 2 4 1

br_model

BrModelRemoveMany ()

Description: Remove a number of models from the registry.

Declaration: br_uint_32 BrModelRemoveMany (br_model* const* models,
int n)

Arguments: br_model * const * models
A pointer to an array of pointers to models.
int n
Number of models to remove from the registry.
Result: br_uint_32
Returns the number of models removed successfully.
See Also: BrModelAddMany () .,

Referencing & Lifetime

Models may be multiply referenced. The model may be referenced by more than one model actor as
long as its lifetime is longer than the actors that refer to them. Models must have been added to the
registry if they will be involved in rendering. The model must be maintained while it is in the registry
or being referenced.

Initialisation

The model is automatically initialised to zero by BrModelAllocate (),,;- Members should then be
set appropriately. Re-initialisation is not recommended — destroy and reconstruct.

Construction & Destruction

Apart from import and platform specific functions, models should only be constructed by the
following BRender function. Destruction should naturally be performed by the corresponding ‘free’
function, usually BrModelFree () ,,;. Note that a model should be removed from the registry before
being destroyed.

2 4 2 Copyright © 1996 Argonaut Technologies Limited

br_model

BrModelAllocate()

Description:

Declaration:

Arguments:

Result:

Allocate a new model.

br_model* BrModelAllocate (const char* name, int nvertices,
int nfaces)

const char * name
String to initialise the identifier member to.
int nvertices

Size of vertex list to allocate. This should be set to zero if maintaining the vertex
list separately (in which case BR_MODF_KEEP_ORIGINAL should be
immediately set in the returned structure).

int nfaces

Size of face list to allocate. This should be set to zero if maintaining the face list
separately (in which case BR_MODF_KEEP_ORIGINAL should be immediately
set in the returned structure).

br_model *

Returns a pointer to the new model, or NULL if unsuccessful.

BrModelFree ()

Description: ~ Deallocate a model and any associated memory.
Declaration: void BrModelFree (br_model* m)
Arguments: br_model * m
A pointer to a model.
Supplementary

BrModelCount ()

Description:

Declaration:

Arguments:

Result:

Count the number of registered models whose names match a given search
pattern. The search pattern can include the standard wild cards “*’ and ‘?’.

br_uint_32 BrModelCount (const char* pattern)
const char * pattern

Search pattern.

br_uint_32

Returns the number of models matching the search pattern.

Copyright © 1996 Argonaut Technologies Limited 2 4 3

br_model

See Also:

BrModelEnum/(),,,, BrModelFind (),

BrModelE

Description:

Declaration:

Arguments:

Result:

Example:

num ()

Calls a call-back function for every model in the registry matching a given
search pattern. The call-back is passed a pointer to each matching model, and
its second argument is an optional pointer supplied by the user. The search
pattern can include the standard wild cards ‘“*” and ‘?’. The call-back itself
returns a br_uint_ 32, value. The enumeration will halt at any stage if the
return value is non-zero.

br_uint_32 BrModelEnum(const char* pattern,
br_model_enum cbfn* callback, void* arg)

const char * pattern

Search pattern.

br_model_enum cbfn * callback

A pointer to a call-back function.

void * arg

An optional argument to pass to the call-back function.
br uint_32

Returns the first non-zero call-back return value, or zero if all matching models
are enumerated.

br_uint_32 BR_CALLBACK test_callback (br_model* model, void* arg)

{

{

br_uint_32 count;

return (count) ;

br_uint_32 enum;

enum = BrModelEnum(“model”, &test_callback,NULL) ;

BrModelFind ()

Description:

Declaration:

244

Find a model in the registry by name. A call-back function can be setup to be
called if the search is unsuccessful. The search pattern can include the standard
wild cards “*’ and ‘?".

br_model* BrModelFind (const char* pattern)

Copyright © 1996 Argonaut Technologies Limited

Arguments:

Result:

See Also:

br_model

const char * pattern
Search pattern.
br_model *

Returns a pointer to the model if found, otherwise NULL. If a call-back exists
and is called, the call-back’s return value is returned.

BrModelFindHook () ,45, BrModelFindMany () 545

BrModelFindMany ()

Description:

Declaration:

Arguments:

Result:

See Also:

Find a number of models in the registry by name. The search pattern can
include the standard wild cards “*’ and ‘?’.

br_uint_32 BrModelFindMany (const char* pattern,
br_model** models, int max)

const char * pattern

Search pattern.

br_model * * models

A pointer to an array of pointers to models.
int max

Maximum number of models to find.

br uint_32

Returns the number of models found. The pointer array is filled with pointers
to the found models.

BrModelFind () ,4, BrModelFindHook () s

BrModelFindHook ()

Description:

Declaration:

Arguments:

Effects:

Functions to set up a call-back.

br _model_find cbfn*
BrModelFindHook (br_model_find_cbfn* hook)

br model find cbfn * hook
A pointer to a call-back function.

If BrModelFind () ,,, is unsuccessful and a call-back has been set up, the call-
back is passed the search pattern as its only argument. The call-back should
then return a pointer to a substitute or default model.

For example, a call-back could be set up to return a default model if the desired
model cannot be found in the registry.

The function BrModelFindFailedLoad (), is provided and will probably
be sufficient in many cases.

Copyright © 1996 Argonaut Technologies Limited 2 4 5

br_model

Result: br_model find_cbfn *

Returns a pointer to the old call-back function.

Example:
br_model BR_CALLBACK * test_callback(const char* pattern)
{ br_model* default_model;

return (default_model) ;
{ br_model* model;

BrModelFindHook (&test_callback) ;

model = BrModelFind (“non_existent_model”);

See Also: BrModelFindFailedLoad (),

BrModelFindFailedLoad ()

Description: ~ 'This function is provided as a suitable function to supply to
BrModelFindHook () 5.

Declaration: br_model* BrModelFindFailedLoad(const char* name)

Arguments: const char * name

The name supplied to BrModelFind () ,4.

Effects: Attempts to load the model from the filing system using name as the filename.
Searches in current directory, if not found tries, in order, the directories listed
in BRENDER_PATH (if defined). If successful, sets this name as the
identifier of the loaded model and adds the model to the registry.

Result: br_model *
Returns a pointer to the model, if found, else NULL.

Example:
BrModelFindHook (BrModelFindFailedLoad) ;

2 4 6 Copyright © 1996 Argonaut Technologies Limited

br_model

Import & Export

BrModelFileCount ()

Description:

Declaration:

Arguments:

Effects:

Result:

Locate a given file and count the number of models in it.

br_uint_32 BrModelFileCount (const char* filename,

br uint_16* num)

const char * filename

Name of the file containing the models to count.

br_uint_16 * num

Pointer to the variable in which to store the number of models counted in the

file. If NULL, the file will still be located and appropriate success returned, but
no count will be made.

Searches for £i 1ename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH (if
defined). If a file is found, will count the number of models stored in it.

br uint_32

Returns zero if the file was found (even if it is not a models file), non-zero
otherwise.

BrModelLoad ()

Description:
Declaration:

Arguments:

Effects:

Result:

See Also:

Copyright © 1996 Argonaut Technologies Limited

Load a model. Note that it is not added to the registry.
br_model* BrModelload (const char* filename)
const char * filename

Name of the file containing the model to load.

Searches for £i 1ename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH Gf
defined).

br model *

Returns a pointer to the loaded model, or NULL if unsuccessful.

BrModelLoadMany () ,,3, BrModelSave () 49, BrModelAdd () ..

247

br_model

BrModell.oadMany ()

Description:

Declaration:

Arguments:

Effects:

Result:

See Also:

Load a number of models. Note that they are not added to the registry.

br_uint_32 BrModelloadMany (const char* filename,
br model** models, br_ uint_16 num)

const char * filename

Name of the file containing the models to load.
br_model ** models

A non-NULL pointer to an array of pointers to models.
br_uint_16 num

Maximum number of models to load.

Searches for £ilename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH Gf
defined).

br uint_32

Returns the number of models loaded successfully. The pointer array if
supplied, is filled with pointers to the loaded models.

See BrModelFileCount () ,,; to determine the number of models in a file.

BrFmtASCLoad ()

Description:
Declaration:

Arguments:

248

Effects:

Result:

Import 3D studio models (geometry only). The models are neither updated nor
registered.

br uint_32 BrFmtASCLoad (const char* name,
br model** mtable, br uint_16 max models)

const char * name
Name of the file containing the models.
br _model ** mtable

A pointer to an array of pointers to models, which will be filled as they are
imported. If NULL, the models are still imported, but must be referenced
subsequently by name.

int max models
The maximum number of models to import.

Searches for £ilename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH (if
defined).

br_uint_32

Returns the number of successfully imported models.

Copyright © 1996 Argonaut Technologies Limited

br_model

BrFmtNFFLoad ()

Description:

Declaration:

Arguments:

Effects:

Result:

Import a model expressed in the Neutral File Format. The model is neither
updated nor registered.

br model* BrFmtNFFLoad (const char* name)
const char * name
Name of the file containing the model.

Searches for £ilename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH (if
defined).

br model *

Returns a pointer to the imported model, or NULL if it could not be imported.

BrModelSave ()

Description:

Declaration:

Arguments:

Effects:
Result:

See Also:

Save a model to a file.

br_uint_32 BrModelSave (const char* filename,
const br model* model)

const char * filename

Name of the file to save the model to.

const br_model * model

A pointer to a model.

Writes the model to a file".

br_uint_32

Returns NULL if the model could not be saved.
BrWriteModeSet (),

* Any existing file of the same name is overwritten.

Copyright © 1996 Argonaut Technologies Limited

249

br_model

BrModelSaveMany ()

Description: Save a number of models to a file.

Declaration: br_uint_32 BrModelSaveMany (const char* filename,
const br model* const* models, br_uint_16 num)

Arguments: const char * filename
Name of the file to save the models to.
const br_model * const * models

A pointer to an array of pointers to models. If NULL, all registered models are
saved (irrespective of num).

br_uint_16 num
Number of models to save.
Effects: Writes the models to a file”.
Result: br_uint_32
Returns the number of models saved successfully.

See Also: BrWriteModeSet (),

* Any existing file of the same name is overwritten.

2 5 O Copyright © 1996 Argonaut Technologies Limited

br_model_ custom_cbfn

br model custom cbfn

The Call-Back Function

This type defines a call-back function, primarily intended for the custom member of the
br_model,,, structure. It enables an application to customise rendering for particular models, or to
perform computations that require information only obtainable at the time a model is rendered.

The typedef

(See model.h fora precise declaration)

void br_model_custom_cbfn (br_actor*, br model*, const br_material*, void*, br_uint_38,
int, const br_matrix34x*,
const br_matrix4*) Custom modelrenderer

Related Functions

Functions dedicated for use within rendering call-backs: Br[ZblZs]ModelRender () ,s3ps4
BrOnScreenCheck () ,5,, BrOriginToScreenXY () ,55, BrPointToScreenXY () ,ss,
BrPointToScreenXYMany () ,55, BrOriginToScreenXYZO () ,5, BrPointToScreenXYZO () ,s;,
BrPointToScreenXYZOMany () ,s;-

Related Structures

See br_renderbounds_cb£n,,; for a post-model rendering call-back. See
br_primitive_cbfn,,; for a primitive insertion call-back used within the Z-Sort renderer.

Specification

CBFnModelCustom/()

Description: An application defined call-back function that is called when a model (whose
custom member defined as the address of this function) is about to be
processed by the rendering engine. If this function does nothing, the model will
not be rendered. The pass through equivalent would be for this function to call
Br[zZblZs]ModelRender () ,sys-

Declaration: void BR_CALLBACK CBFnModelCustom(br_actor* actor,
br_model* model, const br material* material,
void* render_data, br_uint_ 8 style, int on_screen,
const br matrix34* model_to_view,
const br matrix4* model_to_screen)

Copyright © 1996 Argonaut Technologies Limited 2 5 1

br_model_custom_cbfn

Arguments:

Preconditions:

252

Effects:

Remarks:

Example:

br actor * actor

Pointer to model actor referencing the model referring to this call-back.

br model * model

Pointer to model referring to this call-back.

const br material * material

Pointer to actor’s material if defined, or default material otherwise.
void * render data
A pointer to the order table the primitives for this model would be inserted into,

if the Z-Sort renderer is used. The value is NULL if no data is appropriate for
the renderer, e.g. when using the Z-Buffer renderer.

br_uint_8 style

Actor’s rendering style, or default. BRender will not supply
BR_RSTYLE_DEFAULT oOf BR_RSTYLE_NONE.

int on_screen

On-screen flag (see BronScreenCheck () ,s,)- The call-back will never be
called by BRender with the flag value 0SC_REJECT.

const br matrix34 * model to view

A pointer to a matrix giving the model to view space transformation.

const br matrix4 * model to_screen

A pointer to a matrix giving the model to screen transformation.

BRender has completed initialisation. Rendering is in progress. The model’s
bounds intersect or are within the viewing volume.

Behaviour is up to the application. Br[ZblZs]ModelRender () ,sy,s, Or any of
the operations described for br_model_custom_cbfn,, can be used.

Any other BRender functions may be called from within this call-back with the
following restrictions:

e Don’t call any rendering functions, apart from
Br[ZblZs]ModelRender () 5535

e Don’t modify any light, clip-plane or camera actors.
e Don’t access any output buffers until after rendering has completed.
® Don’t change the environment actor.

e For best performance, avoid adding, updating or removing registry items —
try to do these things before rendering.

® Do not modify the actor hierarchy

Possible uses include:

e Selecting models with different levels of detail according to viewer distance
e Morphing models (BrModelUpdate (),,; required)

e (ollision detection (not necessarily indicating the best method)

e Labelling

e Rendering liquids, gases, particulate, flames, smoke, etc.

Copyright © 1996 Argonaut Technologies Limited

See Also:

br_model_ custom_cbfn

br_renderbounds_cbfn,;, br_primitive_cbfn,,
br_pick2d_cbfn,,,, br_pick3d_cbfn,,..

Operations

The following functions are provided solely for use within CBFnModelCustom() s,
CBFnRenderBounds (),,, and CBFnPrimitive (), functions. Br[ZblZs]ModelRender () ,s;,s, 1S
the equivalent of the function that would have been called had the model not specified a call-back
(but it shouldn’t be specified as the call-back itself). Br[2blZs]ModelRender () ,s;,5, should not be
called within CBFnRenderBounds (), or CBFnPrimitive ().

BrZbModelRender ()

Description:

Declaration:

Arguments:

Render a model actor as part of the current Z-Buffer rendering.

void BrZbModelRender (br_actor* actor, br_model* model,
const br _material* material, br_uint_8 style,
int on_screen, int use_custom)

br actor * actor

The pointer to the model actor referencing the supplied model (must not be
NULL).

br model * model
The pointer to the model to be rendered (must not be NULL).

const br material * material

A pointer to the material to use for rendering faces that don’t specify a material
(must not be NULL).

br_uint_8 style
The rendering style to use for rendering the model (any defined style may be
specified, even BR_RSTYLE_NONE).

int on_screen

A flag specifying whether the model is either partially or completely on-screen
(either 0SC_PARTIAL or OSC_ACCEPT). If 0SC_ACCEPT is specified, even off-
screen faces will be rendered. See BronScreenCheck () 55,

int use_custom

If non-zero, invoke the specified model’s custom call-back function. This is
typically zero if the same model is specified.

Copyright © 1996 Argonaut Technologies Limited 2 5 3

br_model_custom_cbfn

BrZsModelRender ()

Description:

Declaration:

Arguments:

Render a model actor as part of the current Z-Sort rendering,.

void BrZsModelRender (br actor* actor, br model* model,
const br material* material, br order table* order_table,
br_uint_8 style, int on_screen, int use_custom)

br_actor * actor

The pointer to the model actor referencing the supplied model (must not be
NULL).

br_model * model
The pointer to the model to be rendered (must not be NULL).
const br_material * material

A pointer to the material to use for rendering faces that don’t specify a material
(must not be NULL).

br order_table * order_table

A pointer to the order table the model’s primitives should be inserted into
(must not be NULL).

br_uint_8 style
The rendering style to use for rendering the model (any defined style may be
specified, even BR_RSTYLE_NONE).

int on_screen

A flag specifying whether the model is either partially or completely on-screen
(either 0SC_PARTIAL or 0SC_ACCEPT). If 0sc_AcCEPT is specified, even off-
screen faces will be rendered. See BronScreenCheck () ,s,.

int use_ custom

If non-zero, invoke the specified model’s custom call-back function. This is
typically zero if the same model is specified.

BrOnScreenCheck ()

Description:

Declaration:

Arguments:

254

Check a bounding box in the model space against the view volume and any clip-
planes.

br_uint_8 BrOnScreenCheck (const br_bounds* bounds)
const br_bounds * bounds

A pointer to a br_bounds,, structure giving the bounding box dimensions in
the model’s co-ordinate space.

Copyright © 1996 Argonaut Technologies Limited

Result:

br_model_ custom_cbfn

br uint_8

Returns one of the following:

Flag Symbol| Meaning

OSC_REJECT The model is entirely outside the viewing volume

0SC_PARTIAL | The model is partially within the viewing volume

OSC_ACCEPT | The model is entirely within the viewing volume

BrOriginToScreenXY ()

Description:

Declaration:

Arguments:

Result:

Transform and project the origin in the model’s co-ordinate space onto the
screen.

br_uint_8 BrOriginToScreenXY (br_vector2* screen)
br vector2 * screen

A pointer to the destination vector to receive the co-ordinates of the point in
projected screen space (See Projected screen space, page 23). Note that the
point is not necessarily on screen, i.e. inside the bounds of the output pixel map.

br uint_8

Returns zero if the point is in front of the eye (the viewing pyramid).

BrPointToScreenXY ()

Description:

Declaration:

Arguments:

Result:

Transform and project a single point in the model’s co-ordinate space onto the
screen.

br uint_8 BrPointToScreenXY (br_vector2* screen,
const br_vector3* point)

br vector2 * screen

A pointer to the destination vector to receive the co-ordinates of the point in
projected screen space (See Projected screen space, page 23). Note that the
point is not necessarily on screen, i.e. inside the bounds of the output pixel map.

const br_vector3 * point

A pointer to the source vector containing the co-ordinates of the point to
project.

br uint_8

Returns zero if the point is in front of the eye (the viewing pyramid).

Copyright © 1996 Argonaut Technologies Limited 2 5 5

br_model_custom_cbfn

BrPointToScreenXYMany ()

Description:

Declaration:

Arguments:

Effects:

Transform and project a number of points in the model’s co-ordinate system
onto the screen.

void BrPointToScreenXYMany (br_ vector2* screens,
const br_ vector3* points, br_uint_32 npoints)

br vector2 * screens

A pointer to an array of destination vectors to receive the co-ordinates of each
point in projected screen space (See Projected screen space, page 23). Note that
the points are not necessarily on screen, 1.e. inside the bounds of the output
pixel map.

const br_vector3 * points

A pointer to an array of source vectors containing co-ordinates of points in
model space.

br_uint_32 npoints
Number of points to process.

Equivalent to a call of BrPointToScreenXY () ,ss for each screen and point
Vector.

BrOriginToScreenXYZO ()

Description:

Declaration:

Arguments:

Effects:

Result:

256

Transform and project the origin in the model’s co-ordinate space onto the
screen, generating X, y and z co-ordinates. If it is off-screen, it is not projected.

br_uint_32 BrOriginToScreenXYZO (br_vector3* screen)
br vector3 * screen

A pointer to the destination vector to receive the co-ordinates of the point in
projected screen space (See Projected screen space, page 23).

The origin is checked against the viewing volume. If within, the equivalent
screen and depth buffer co-ordinates are calculated, otherwise the function has
no effect.

br_uint_32

If the co-ordinates have been placed in the destination vector the function
returns zero, otherwise the origin is off-screen, in which case its out-code, made
up from a combination of the flags in the following table is returned.

Out-Code Flag |Flag Set When Origin
Value Is

OUTCODE_LEFT 0x01 Outside left plane

OUTCODE_RIGHT |0x02 Outside right plane

OUTCODE_TOP 0x04 Outside top plane

Copyright © 1996 Argonaut Technologies Limited

br_model_ custom_cbfn

OUTCODE_BOTTOM | 0x08 Outside bottom plane
OUTCODE_HITHER |0x10 Outside hither plane
OUTCODE_YON 0x20 Outside yon plane

BrPointToScreenXYZO ()

Description: Transform and project a point in the model’s co-ordinate space onto the screen,
generating X, y and z co-ordinates. If it is off-screen, it is not projected.

Declaration: br_uint_32 BrPointToScreenXYZO (br_ vector3* screen,
const br_vector3* point)

Arguments: br vector3 * screen
A pointer to the destination vector to receive the co-ordinates of the point in
projected screen space (See Projected screen space, page 23).
const br_vector3 * point
A pointer to the source vector.

Effects: The point is checked against the viewing volume. If within, the equivalent
screen and depth buffer co-ordinates are calculated, otherwise the function has
no effect.

Result: br_uint_32
If the co-ordinates have been placed in the destination vector the function

returns zero, otherwise the point is off-screen, in which case its out-code, made
up from a combination of the flags in the following table is returned.

Out-Code Flag |Flag Set When Point
Value Is
OUTCODE_LEFT 0x01 Outside left plane
OUTCODE_RIGHT |[0x02 Outside right plane
OUTCODE_TOP 0x04 Outside top plane
OUTCODE_BOTTOM | 0x08 Outside bottom plane
OUTCODE_HITHER |0x10 Outside hither plane
OUTCODE_YON 0x20 Outside yon plane

See Also: BrOriginToScreenXYZO () s

Copyright © 1996 Argonaut Technologies Limited 2 5 7

br_model_custom_cbfn

BrPointToScreenXYZOMany ()

Description:

Declaration:

Arguments:

Effects:

See Also:

Transform and project a number of points in the model’s co-ordinate space onto
the screen, generating a series x, y and z co-ordinates and out-codes. All those
that are off-screen are not projected.

void BrPointToScreenXYZOMany (br_vector3* screens,
br_uint_32* outcodes, const br_ vector3* points,
br_uint_32 npoints)

br_vector3 * screens

A pointer to a list of destination vectors, each of which will receive co-ordinates
of each point in projected screen space (See Projected screen space, page 23).

br uint_32 * outcodes
A pointer to an array of out-codes for each point. If the co-ordinates have been
placed in the corresponding destination vector the out-code will be zero,

otherwise the point is off-screen, in which case only its out-code (see
BrPointToScreenXYZO () ,s,) is stored.

const br_vector3 * points

A pointer to an array of source vectors containing the points to be projected.
br_uint32 npoints

Number of points.

Equivalent to a call of BrPointToScreenXYZO (),s; for each point. Only co-
ordinates of points in the viewing volume are written to corresponding
elements of screens.

BrOriginToScreenXYZO () 5

258

Copyright © 1996 Argonaut Technologies Limited

br_model_enum_cbfn

br model enum cbfn

The Call-Back Function

This type defines a function, supplied to BrModelEnum () ,,,, and to be called by it for a selection of
models.

The typedef

(See fwproto.h fora precise declaration)

br_uint_32 br_model_enum_cbfn (br_model*, void*)Enumerator
Specification

CBFnModelEnum ()

Description: An application defined call-back function accepting a model and an application
supplied argument (as supplied to BrModelEnum () ,,,).

Declaration: br_uint_32 BR_CALLBACK CBFnModelEnum(br model* model,
void* arg)

Arguments: br_model * model
One of the models selected by BrModelEnum () 54,
void * arg
The argument supplied to BrModelEnum () ,,.
Preconditions: ~ BRender has completed initialisation.

Effects: Application defined. Avoid adding or removing models within this function.

Result: br_uint_32
Any non-zero value will terminate the enumeration and be returned by
BrModelEnum (),,,. Return zero to continue the enumeration.

See Also: BrModelEnum () ,,,, BrModelFind (),

Copyright © 1996 Argonaut Technologies Limited 2 5 9

br_model_find_cbfn

br model find cbfn

The Call-Back Function

This type defines a function, registered with BrModelFindHook () ,,s, to be called when
BrModelFind () ,,, or BrModelFindMany () ,,s fail to find any model.

The typedef

(See fwproto.h fora precise declaration)

br_model¥*

Specification

br_model_find_cbfn(const char*) Find (whenBrModelFind () fails)

CBFnModelFind ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:
Result:

Remarks:

See Also:

An application defined call-back function used when BrModelFind () ,,, OF
BrModelFindMany () ,4s fail.

br_model* BR_CALLBACK CBFnModelFind (const char* name)
const char * name

The search pattern supplied to BrModelFind () ,4, Or
BrModelFindMany () ,,; that did not match any model.

BRender has completed initialisation. No model has an identifier that
successfully matches the search pattern.

Application defined.

br model *

Either return an existing model that is deemed appropriate for the search

pattern, or NULL if there isn’t one. This value will be returned by
BrModelFind () ,,, or BrModelFindMany () ;-

This could either be used to supply a default model or to create a model. If
models were created on demand, then this function could search another list of
available models (but not yet created) and see if the pattern matched any of
them, if it did, one of them could be registered and returned. Note that there is
no way to supply more than one model.

BrModelFind(),,, BrModelFindMany () ,,s, BrModelFindHook () ,4s,
BrModelFindFailedLoad () .

260

Copyright © 1996 Argonaut Technologies Limited

br_modelpick2d_cbfn

br_modelpick2d cbfn

The Call-Back Function

This type defines a call-back function, which is called by BrModelPick2D () ,5,. It is called for each
face of a particular model that intersects a given ray. It’s typically used to implement face picking
functions for user interfaces.

The typedef

(See fwproto.h fora precise declaration)

int br_modelpick2d cbfn(br_model*, const br_material*, const br_vector3¥*,

const br_vector3*, br_scalar, int, int, int, const br_ vector3*, const br vector2*,
void*) Face pick

Related Functions

The function that invokes this call-back is BrModelPick2D () ,;s.

For a function that calls a call-back for each model actor beneath a specific pixel, see
BrScenePick2D () g.

Related Structures

See br_pick2d_cb£n,,, for a call-back from which this one is typically called.

See br_model_custom_cbfn,, for details of functions (used from within rendering call-backs)
that can convert model co-ordinates into screen co-ordinates, e.g. BrPointToScreenXY () ,ss.

Specification

CBFnModelPick2D ()

Description: An application defined call-back function that is called by
BrModelPick2D () ,;s. [tis called for each face that intersects a specific section
of a particular ray in a model’s co-ordinate space.

Declaration: int BR_CALLBACK CBFnModelPick2D (br model* model,
const br_material* material, const br_vector3* ray_pos,
const br_vector3* ray dir, br_scalar t, int face,
int edge, int vertex, const br_vector3* p,
const br_vector2* map, void* argqg)

Copyright © 1996 Argonaut Technologies Limited 2 6 1

br_modelpick2d_cbfn

Arguments:

Preconditions:
Effects:
Result:

262

P

Example:

br model * model

Pointer to the model to pick from.

const br material * material

Pointer to the default material attributed to the model.
const br_vector3 * ray_ pos

Pointer to a 3D vector giving a starting position of the pick ray in the model’s
co-ordinate space.

const br_vector3 * ray dir

Pointer to a 3D vector giving direction of ray from view-point through pixel in
the model’s co-ordinate space.

br scalar t

The co-efficient giving the position of the intersection of the face with the pick
ray. The position is supplied in p.

int face

The index of the face intersecting the ray. See faces of br_model,;,.

int edge

The index giving the edge nearest the intersection point. This is the edge from
vertices[edge] tovertices|[(edge+1)%3].Seebr_face,,.

int vertex

The index giving the vertex nearest the intersection point. This is the vertex
vertices[vertex] inthe br_face,,; structure.

const br_vector3 * p

The position of the point at which the ray intersects the face, obtained using the
following formula.

=P +1 d

intersect ray intersect~ray

const br_vector2* map

The texture co-ordinates of the intersection point on the face. Apply the
(perspective correct) material’s texture map transform to obtain the row and
column indices into the texture map.

void * arg

The corresponding value specified in the call of BrModelPick2D () ,;; that
invoked this call-back.

The function is called from within BrModelPick2D () .

Behaviour is up to the application.

int

Return zero to continue the search for intersecting faces, non-zero to terminate.
A non-zero value will be returned by BrModelPick2D () ,ss.

Possible uses include:

e Face, Edge and Vertex Selection

Copyright © 1996 Argonaut Technologies Limited

br_modelpick2d_cbfn

See Also: br_model,,, br_pick2d_cbfn,,, br_pick3d_cbfn,,..

Copyright © 1996 Argonaut Technologies Limited 2 63

br_order_table

br order table

The Structure

This is an order table used by the Z-Sort renderer. It contains a table of pointers to linked lists of
rendering primitives. The Z depth range of the order table is divided into a number of equal intervals
(buckets). Each primitive generated by the Z-Sort renderer is inserted into the appropriate list so that
it is eventually rendered in order of depth. It is the application developer’s task to determine a
scheme so that the scene is crudely segmented into layers of background through to foreground (with
an order table for each layer), and any mutually depth critical faces are sorted in order. It does not
matter in which order non-overlapping faces are drawn with respect to each other, so the trick is to
sort only overlapping faces that need sorting, i.e. concave models, or interpenetrating models.

There is a facility of nominating a primary order table such that all other secondary order tables are
rendered in between its buckets. This provides a quick and easy way of progressing to the next step,
after having a single order table, i.e. a primary order table for static features and individual order
tables for models.

Order tables are assigned to actors, either by default, inheritance or explicitly (see
BrZsActorOrderTableSet ()).

The typedef

(See order.h for precise declaration and ordering)

Parameters

br_scalar min_z Minimum s depth of range

br_scalar max_z Maximum s depth of range

br_scalar sort_z Depth at which order table should be sorted
br_uint_16 size Number of buckets

br_uint_16 type Sort type

br_uint_32 flags Various flags

Internal

br_primitive ** table Order table array (of primitive linked-lists)
br_order_table * next Next order table

br_uint_16 visits Number of times order table has been referenced so far
Related Functions

Scene Modelling

BrZsActorOrderTableSet () gy, BrZsActorOrderTableGet (),

Scene Rendering

BrZsPrimitiveCallbackSet ();,, BrZsPrimitiveBucketSelect () ;3.

2 6 4 Copyright © 1996 Argonaut Technologies Limited

br_order_table

Related Structures

Scene Rendering

br primitive;,,, br_primitive cbfn;,,.

Members
Parameters

br_scalar min_z, max_z

Range of z depths over which to sort. Any z depths of vertices outside this range will be clamped to
the limits. Note that the z depth values are a result of a linear mapping from camera co-ordinate space,
oftherange [-hither_z,-yon_z]totherange [-hither_z, +yon_z]. These members are usually
set by using the BR_ORDER_TABLE_NEW_BOUNDS or BR_ORDER_TABLE_INIT_BOUNDS flags, butcan be
set explicitly using the BrZsScreenZToDepth () ;; functions. Note that

BrOriginToScreenXYZO () ,s, BrPointToScreenXYZO (),s, and

BrPointToScreenXYZOMany (), return projected screen z ordinates, not depths.

The z range (max_z-min_z) must be greater than 0.001, otherwise it will be forced to this range.

br_ scalar sort_z

This member defines the value of z used to determine the position at which this order
table is in the list of order tables. This value is typically set to min_z, and may be set
explicitly or automatically at the same time asmin_z and max_ z. There are flags available
which can be used to specify how sort_z is calculated.

Note that this member is not relevant to primary order tables.

br uint 16 size

This member defines the number of intervals (buckets) that the z range is divided into. It also defines
the number of pointers pointed to by table.

An order table used for a single opaque convex model need only have one bucket, whereas a complex
model actor with several child models (within the z range of the parent) might need several intervals.

Copyright © 1996 Argonaut Technologies Limited 2 6 5

br_order_table

br_uint_16 type

How primitives are inserted into an order table, obviously depends upon their depth, but for
primitives with more than one z value, such as lines, triangles and quads, how to arrive at a single z
value is not a clear cut decision. Because it depends so much upon the scene and the application, it
is left to the application to specify the way the sorting z should be obtained. The following table
describes each type which can be specified in this member.

Sort Type Z for Bucket Determination
BR_SORT_FIRST_VERTEX |Arbitrary — the first vertex is as good as any

BR_SORT_MIN The nearest vertex
BR_SORT_MAX The furthest vertex
BR_SORT_AVERAGE The average depth of vertices

br_uint_32 flags

At some point the z range of each order table must be set appropriately. The z range is not only used
to determine into which buckets each primitive should be placed, but also in which order the order
tables should be rendered. If the application knows in advance what this range can be then the zrange
can be set before rendering begins (see BrZsScreenZToDepth () ;;), otherwise various flags can be
used to get the z range to be calculated automatically. Note that an order table is used in descendant
order, that is, actors nearer the root of the hierarchy will see the order table first. Once the hierarchy
has been traversed, the order tables will be sorted according to the value of sort_ z, which can be set
according to the values of min_z and max_z. The order tables will be rendered furthest first (see also
BrZsOrderTablePrimaryEnable () ;).

The flags are described in the following table.

Flag Behaviour

BR_ORDER_TABLE_LEAVE_BOUND | Z range is left unchanged (presumably preset)
S

BR_ORDER_TABLE_NEW_BOUNDS |Zrange is recalculated from the bounds of each actor that uses it, just before each
use. Note that the order table is sorted according to the last value of sort_ z.
BR_ORDER_TABLE_INIT_BOUNDS |Z range is calculated from the bounds of the first actor that uses it (e.g. a
BR_ACTOR_BOUNDS_CORRECT actor).

BR_ORDER_TABLE_CONVEX Z range is ignored for bucket determination (primitives placed in first bucket,
and not sorted), but other flags still apply for ordering the order table.
BR_ORDER_TABLE_SORT_NEAR sort_z is set tomin_z when the bounds are calculated

BR_ORDER_TABLE_SORT_CENTRE [sort_zissetto (min_z+max_z) /2 when the bounds are calculated

BR_ORDER_TABLE_SORT_FAR sort_z is set to max_z when the bounds are calculated

The first three flags are mutually exclusive, as are the last three. Any one of the first three may be
combined with the fourth, and any one of the last three.

Bounds can be computed from the following actors: BR_ACTOR_MODEL, BR_ACTOR_BOUNDS and
BR_ACTOR_BOUNDS_CORRECT.

2 66 Copyright © 1996 Argonaut Technologies Limited

br_order_table

Note that when an order table’s bounds are calculated, they are always calculated from the full
bounds of the model (or bounds data structure). Therefore, it is possible, where bounds intersect the
boundaries of the viewing volume, for one of the order table bounds to lie outside the view space. All
buckets are still rendered, but the buckets outside the view space will be empty (unless a custom
primitive call-back has utilised them).

Internal

br_primitive ** table

A pointer to a list of heads of linked lists of primitives. Each linked list is effectively each bucket of
the bucket sort (per order table). This member is for internal use only. Each pointer will be NULL if
the bucket is empty. Note that primitives are allocated from the primitive heap supplied at the start
of rendering

br order table * next

Pointer to the next order table (next lowest min_z). NULL at end of list. Each rendering, this list is
constructed (before drawing), and then deconstructed (after drawing). This member should only be
non-NULL during rendering, i.e. within a rendering call-back function such as
CBFnModelCustom () ,s;. This member is for internal use only.

br uint 16 visits

This member is used to determine when to clear and initialise the order table’s z range (if required).
This member is set to zero upon allocation and after rendering, and incremented each time it is
referenced by an actor traversed during rendering. When zero, the order table is cleared (and if
BR_ORDER_TABLE_INIT_BOUNDS is set, its z range calculated) when it is next referenced by an actor
traversed during rendering. This member is for internal use only.

Operations

BrZsOrderTablePrimitivelInsert ()

Description: Insert a rendering primitive into an order table.

Declaration: void
BrZsOrderTablePrimitivelInsert (br_order_table* order table
, br_primitive* primitive, br_uint_16 bucket)

Copyright © 1996 Argonaut Technologies Limited 2 6 7

br_order_table

Arguments: br_order_table * order_ table

Non-NULL pointer to order table in which to insert primitive (supplied as
argument to CBFnPrimitive () ;).

br_primitive * primitive

Non-NULL pointer to primitive to insert (supplied as argument to
CBFnPrimitive (),).

br uint_16 bucket

Bucket of order table in which to insert primitive (between 0 and
order_table->size-1). See BrZsPrimitiveBucketSelect () ;.

Preconditions: Between BrZsSceneRenderBegin () ;; & BrZsSceneRenderEnd () 5.
Within a primitive call-back function.

Effects: 'The primitive is inserted into the order table in the specified bucket.

Remarks: 'This function is only provided to customise the ordering of primitives in a
particular order table. It is not intended to permit automatic generation of
primitives.

Note that order tables are marked for clearing after rendering and allocation.
Upon entry to a primitive call-back, the order table will have been cleared, and
may already contain primitives. The state of other order tables is undefined.

See Also: BrZsModelRender () s, -

BrZsOrderTablePrimaryEnable ()

Description: Enable the use of a primary order table, between whose buckets all other order
tables are then rendered. By default, no primary order table is enabled.

Declaration: void
BrZsOrderTablePrimaryEnable (br_order_table* order_ table)

Arguments: br_order_table * order_ table

A pointer to the order table to be used as the primary order table. If NULL is
supplied, the default order table will be used.

Preconditions: ~ Between BrZsBegin () ,; & BrZsEnd () 4.

Effects: 'The Z sort renderer will use the specified order table as a primary order table,
making other order tables secondary. All secondary order tables are rendered
sequentially, as appropriate, between the rendering of the buckets of the
primary order table. Secondary order tables whose sort_z lies further away
than max_ z are rendered first (in order of their sort_z). Then the furthest
bucket of the primary order table is rendered, followed by the secondary order
tables whose sort_ z lies within that bucket (in order of their sort_z). This
continues for each bucket of the primary order table. Finally, the secondary
order tables whose sort_ z is in front of the nearest bucket of the primary order
table are rendered (in order of their sort_ z).

2 68 Copyright © 1996 Argonaut Technologies Limited

Remarks:

See Also:

br_order_table

Note that the primary order table facility only provides a relatively coarse way
of merging the ordering of primitives (or buckets) in secondary order tables with
those in the primary order table. Nevertheless, with a bit of care, it often gives
satisfactory results for a wide range of scenes, with relatively straightforward
allocation of order tables.

BrZsOrderTablePrimaryDisable () ,4.

BrZsOrderTablePrimaryDisable ()

Description:

Declaration:
Preconditions:
Effects:

Remarks:

See Also:

Disable the use of a primary order table. Note that the primary order table is
disabled by default.

void BrZsOrderTablePrimaryDisable ()
Between BrZsBegin () ,; & BrZsEnd () 4.
Order tables are rendered sequentially in order of their sort_ z.

The simpler Z sort algorithm that this function engages, generally requires a
deal of care and effort to ensure correct rendering order, especially in complex
scenes. The results generally produce a more reliable ordering than with a
primary order table, as so much more care is needed.

BrZsOrderTablePrimaryEnable () 5.

Copy/Assign

Structure assignment is not recommended. Copy members as appropriate.

Access & Maintenance

Members should only be modified with care during rendering. Do not modify primitives via table,
or the linked list of order tables via next. Order tables are automatically cleared at the start of each
rendering, but can be cleared thereafter (if required) using BrZsOrderTableClear () .

BrZsOrderTableClear ()

Description:
Declaration:

Arguments:

Preconditions:
Effects:

Copyright © 1996 Argonaut Technologies Limited

Clear an order table, re-initialising its table of pointers to primitives.
void BrZsClearOrderTable (br order_table* order_table)
br order table * order_ table

A non-NULL pointer to the order table to be cleared.

Between BrZsBegin () ,3 & BrZsEnd () 4.

The series of void pointers pointed to by table are reset to NULL. Some
private flags may be modified.

269

br_order_table

Remarks: Note that order tables are marked for clearing after rendering and allocation.
Upon entry to a primitive call-back, the order table will have been cleared, and
may already contain primitives. Given automatic clearing, the use of this
function is not generally required.

See Also: BrZsActorOrderTableGet () 4.

Referencing & Lifetime

Order tables can be referred to any number of times by an actor (through use of
BrZsActorOrderTableSet ()). Order tables must be valid throughout rendering, i.e. between
BrZsSceneRenderBegin (), and BrZsSceneRenderEnd () ;;. Note that primitive data is re-used
from the primitive heap (supplied to BrZsBegin () ,5) each rendering. Therefore, it is not possible to
incorporate primitives from an order table generated in one scene into another scene.

There is a default order table which has 256 buckets and spans the depth of the view volume (its z
range is set from the camera used for the rendering). It thus has just the flag
BR_ORDER_TABLE_LEAVE_BOUNDS set. Do not attempt to modify the default order table - create your
own.

Initialisation

Allocation performs most initialisation. The only remaining initialisation required is to set the z range
(min_z and max_z) and the z sort position (sort_z), which only needs to be done if these member
will not be set by using flags such as BR_ORDER_TABLE_NEW_BOUNDS and
BR_ORDER_TABLE_INIT_BOUNDS.

Construction & Destruction

Order tables should be constructed using BrZsOrderTableAllocate () ,;, and destroyed using
BrZsOrderTableFree ().

BrZsOrderTableAllocate ()

Description: Allocate a new order table.

Declaration: br_order table* BrZsOrderTableAllocate (br_uint_16 size,
br_uint_32 flags, br_uint_16 type)

2 70 Copyright © 1996 Argonaut Technologies Limited

Arguments:

Preconditions:

Effects:

Result:

Remarks:

See Also:

br_order_table

br uint_16 size

Number of buckets in order table (See br_uint_16 size, page 265).
br_uint_32 flags

Order table flags (See br_uint_32 flags, page 266).

br_uint_16 type

Order table type (See br_uint_16 type, page 266).

Between BrZsBegin () ,; & BrZsEnd () 4.

Memory can be allocated.

Abr_order_table,,, data structure is allocated (using

BrResAllocate (), from the BR_MEMORY_RENDER_DATA memory class) and
initialised (See br_order_table,, Initialisation). The zrange and sort zare
initialised to zero.

br order table *

A pointer to the new br_order_table,,, data structure.

Ensure min_z, max_z and sort_z are set appropriately if they will not be
initialised automatically, 1.e. if the BR_ORDER_TABLE_LEAVE_BOUNDS flag is
set.

BrZsOrderTableFree (),

BrZsOrderTableFree ()

Description:
Declaration:

Arguments:

Preconditions:
Effects:

Remarks:

See Also:

Free an order table.
void BrZsOrderTableFree (br order_table* order table)
br order_table * order_table

A non-NULL pointer to an order table previously allocated using
BrZsOrderTableAllocate () .

Between BrZsBegin () ,; & BrZsEnd () 4. Not currently rendering.
Uses BrResFree () 5, to release storage.

Ensure that no actor is currently using the order table before using this function.
Do not attempt to free an active order table, such as is passed as an argument to
a rendering call-back function, e.g. CBFnPrimitive () ;.

BrZsOrderTableAllocate () ,;, BrResFree ().

Copyright © 1996 Argonaut Technologies Limited

271

br_pick2d_cbfn

br_pick2d_cbfn

The Call-Back Function

This type defines a call-back function, which is called by BrScenePick2D (). It is called for each
model actor in an actor hierarchy that is beneath a particular screen pixel (corresponding to a
particular camera). It’s typically used to implement picking functions for user interfaces.

The typedef

(See fwproto.h fora precise declaration)

int br_pick2d _cbfn(br_actor*, const br_model*, const br material*, const br_vector3¥,
const br_vector3*, br_scalar, br_scalar, void*) 2D pick call-
back

Related Functions

The function that invokes this call-back is BrScenePick2D () g.

For a function that calls a call-back for each model actor whose bounds intersect a specific bounds,
see BrScenePick3D ()g,.

Related Structures

See br_pick3d_cbfn,,; for a similar 3D call-back.

See br_model_custom_cbfn,, for details of functions (used from within rendering call-backs)
that can convert model co-ordinates into screen co-ordinates, e.g. BrPointToScreenXY () ,ss.

Specification

CBFnPick2D ()

Description: An application defined call-back function that is called by
BrScenePick2D (). It is called for each model actor whose bounds intersect
the ray passing from a camera through a particular screen pixel (see
BrScenePick2D ()).

Declaration: int BR_CALLBACK CBFnPick2D (br_ actor* a,
const br model* model, const br material* material,
const br_vector3* ray pos, const br_vector3* ray dir,
br_scalar t_near, br_scalar t_far, void* arg)

Arguments: br_actor * a

Pointer to model actor whose model bounds intersect the pick ray.

2 7 2 Copyright © 1996 Argonaut Technologies Limited

br_pick2d_cbfn

const br model * model

Pointer to the model attributed to the model actor whose bounds intersect the
pick ray (may be an inherited model).

const br material * material

Pointer to the default material attributed to the model actor that may be used
by the model (may be an inherited material).

const br_vector3 * ray_ pos

Pointer to a 3D vector giving a starting position of the pick ray in the model’s

co-ordinate space. This position has no special significance, i.e. it is not
necessarily the position of the view-point.

const br_vector3 * ray dir

Pointer to a 3D vector giving direction of ray from view-point through pixel in
the model’s co-ordinate space. The magnitude has no special significance, i.e.
it is not necessarily the position of the model.

br_scalar t_near

The co-efficient giving the position of the entry point of the pick ray into the
bounds of the intersecting model, in the model’s co-ordinate space. To obtain
this position refer to the following formula.

P =P +t d

entry ray near“ray
br_scalar t_far

The co-efficient giving the position of the exit point of the pick ray out of the
bounds of the intersecting model, in the model’s co-ordinate space. To obtain
this position refer to the following formula.

exit — B+ gfardray

ray
void * arg

The corresponding value specified in the call of BrScenePick2D ()4 that
invoked this call-back.

Preconditions: ~ BRender has completed initialisation. A model’s bounds intersect the pick ray.
The order in which intersections are computed is undefined.

Effects: Behaviour is up to the application.

Result: int
Return zero continue the search for intersecting model actors, non-zero to
terminate. A non-zero value will be returned by BrScenePick2D () 4.

Remarks: For borderline cases, the pick ray is defined to be such that if a model’s
rendering would appear in the pixel then the model’s bounds will intersect the
ray. The precise sub-pixel position of the ray is consistent, but undefined.

Example: Possible uses include:

e Selection
e Manipulation

Copyright © 1996 Argonaut Technologies Limited 2 7 3

br_pick2d_cbfn

See Also: br_model_custom_cbfn,;, br_renderbounds_cbfn,,,
br_pick3d_cbfn,,.

2 7 4 Copyright © 1996 Argonaut Technologies Limited

br_pick3d_cbfn

br_pick3d_cbfn

The Call-Back Function

This type defines a call-back function, which is called by BrScenePick3D (). It is called for each
model actor in an actor hierarchy whose bounds intersect a given bounds with respect to a particular
actor’s co-ordinate space.

The typedef

(See fwproto.h fora precise declaration)
int br_pick3d_cbfn(br_actor*, const br_model*, const br material*, const br_matrix34*,
const br_bounds*, void*) 3D pick

Related Functions

The function that invokes this call-back is BrScenePick3D ().

For a function that calls a call-back for each model actor whose bounds intersect a ray from view-point
through a particular screen pixel, sec BrScenePick3D ().

Related Structures

See br_pick2d_cbfn,,, for a similar 2D call-back.

See br_model_custom_cbfn,, for details of functions (used from within rendering call-backs)
that can convert model co-ordinates into screen co-ordinates, e.g. BrPointToScreenXY () ,ss.

Specification

CBFnPick3D ()

Description: An application defined call-back function that is called by
BrScenePick3D (). [t is called for each model actor whose bounds intersect
a given bounds with respect to a particular actor’s co-ordinate space (see
BrScenePick3D ()g,).

Declaration: int BR_CALLBACK CBFnPick3D (br_actor* a,
const br model* model, const br_material* material,
const br_matrix34* transform, const br_bounds* bounds,
void* arg)

Copyright © 1996 Argonaut Technologies Limited 2 7 5

br_pick3d_cbfn

Arguments:

Preconditions:

Effects:

Example:

See Also:

br actor * a

Pointer to model actor whose model bounds intersect the specified bounds.
const br model * model

Pointer to model whose bounds intersect the pick ray.

const br material * material

Pointer to the default material attributed to the model actor that may be used
by the model (may be an inherited material).

const br matrix34 * transform

A pointer to a matrix transforming the intersecting actor’s model co-ordinates
into the co-ordinate space of the reference actor (as supplied to
BrScenePick3D ()g,).

const br bounds * bounds

A pointer to the original bounds (in the reference actor’s co-ordinate space).
void * arg

The corresponding value specified in the call of BrScenePick3D (), that
invoked this call-back.

BRender has completed initialisation. A model’s bounds intersect the bounds
in the reference actor’s co-ordinate space.

Behaviour is up to the application.

Possible uses include:

e Collision detection (does not necessarily indicate the best method)
e Volumetric selection

br_model_custom_cbfn,;,, br_renderbounds_cbfn,,
br_pick2d_cbfn,,,.

276

Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

br pixelmap

The Structure

BRender’s pixel map structure, used for texture maps, shade tables, blend tables, colour buffers and
Z-buffers. See Image Support. Texture maps, shade tables, and blend tables being required for
rendering materials should be maintained within the registry as necessary.

The typedef

(See pixelmap.h for precise declaration and ordering)

Behaviour

br_uint_8 type Individual pixel type
br_uint_8 flags

Size & Position

br_int_16 origin_x, origin_y Local origin (centre), relative to base_x, base_y

br_uint_16 width, height Sise of pixel map (in pixels)

Data

void * pixels A pointer to raw pixel data

br_int_16 row_bytes The difference in bytes between pixels at the same
column of adjacent rows

br_uint_16 base_x, base_y Co-ordinates of the region of pixels in use

br_pixelmap * map A pointer to a colour map, used when pixel colours are
indexed

Supplementary

char * identifier An optional name for texture maps and tables

void * user User data (application dependent)

void * device A device pointer, used if the pixel map originated from
a device

Related Functions

Scene Rendering

See BrZbSceneRenderBegin () 34, BrZbSceneRender () ;,.

Image Support

See BrPixelmapDoubleBuffer () ,, BrPixelmapDirtyRectangleCopy () .,
BrPixelmapDirtyRectangleFill () ,, BrScenePick2D ().

Copyright © 1996 Argonaut Technologies Limited 2 7 7

br_pixelmap

Related Structures

Scene Modelling

See br_material,;,

Members
Behaviour

br uint_8

type

This member defines the type of data stored for each pixel in the pixel map. The various types have
values defined by the following symbols:

Pixel Map Type

Pixel Map Behaviour

BR_PMT_INDEX 1

1 bit index into a colour map (2 colours)

BR_PMT_INDEX_2

2 bit index into a colour map (4 colours)

BR_PMT_INDEX_4

4 bit index into a colour map (16 colours)

BR_PMT_INDEX_8

8 bit index into a colour map (256 colours)

BR_PMT_RGB_555

16 bit ‘true colour’ RGB, 5 bits each colour

BR_PMT_RGB_565

16 bit ‘true colour’ RGB, 5 bits red and blue, 6 bits green

BR_PMT_RGB_888

24 bit ‘true colour’ RGB, 8 bits each colour

BR_PMT_RGBX_888

32 bit ‘true colour’ RGB, 8 bits each colour, 8 bits unused

BR_PMT_RGBA_888
8

32 bit ‘true colour’ RGB, 8 bits each colour with an 8 bit alpha channel

BR_PMT_DEPTH_16

The pixel map is used as a depth buffer with 16 bit precision

BR_PMT_DEPTH_32

The pixel map is used as a depth buffer with 32 bit precision

Pixel Map Type

32 Bit Pixel Value Encoding

First Four Bytes” of Left Hand Pixel

BR_PMT_INDEX_1

00000000000000000000000000000001

BR_PMT_INDEX 2 0000000000000000000000000000004dfdd. s viviii bttt
BR_PMT_INDEX_4 00000000000000000000000000001iddfdddd. . v it i
BR_PMT_INDEX_38 000000000000000000000000i1iidiiddfd1ididddd ovviv il Lo
BR_PMT_RGB_555 00000000000000000rrrrrgggggbbbbb| gggbbbbb Orrrrrgg
BR_PMT_RGB_565 0000000000000000rrrrrggggggbbbbbl| gggbbbbb rrrrrggg «.oeeu...
BR_PMT_RGB_888 00000000rrrrrrrrggggggggbbbbbbbb| bbbbbbbb gggggggg rrrrrrrr
BR_PMT_RGBX_888 [00000000rrrrrrrrggggggggbbbbbbbb| bbbbbbbb gggggggg rrrrrrrr XxXxXXXXXX
BR_PMT_RGBA_8888|aaaaaaaarrrrrrrrggggggggbbbbbbbb| bbbbbbbb gggggggg rrrrrrrr aaaaaaaa
BR_PMT_DEPTH_16 [dddddddddddddddd0000000000000000|Undefined

BR_PMT_DEPTH_32 [dddddddddddddddddddddddddddddddd|Undefined

* The left hand byte is the byte at pixels.

278

Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

All values are written with the most significant bit to the left.

The Encoding column represents the 32 bit value to be supplied as colour to functions such as
BrPixelmapPixelSet (), |he last column shows how the first pixel on a row will appear in the
first four bytes indexed from pixels. The dots represent further pixels. The ordering of bytes pixel
maps is independent of word byte order, except in the case of depth buffers, in which pixels are read
and written as 32 bit values. This means that in a 16 bit depth buffer the least significant 16 bits are
lost.

Note, with respect to pixel maps used as textures, that zero pixels (irrespective of any palette
information) are not rendered, and so have the effect of transparency. This only applies to textures
and not to pixel map operations such as BrPixelmapCopy () s

br_uint_8 flags

This is a read-only member, set upon allocation, that contains various flag values. One of the flags
that may be useful is BR_BMF_NO_ACCESS which will be set if the pixel data is stored at pixels. If
not set then pixels is invalid and there is no direct access to pixel data.

Sige & Position

br_int_16 origin_x, origin_y

These members define the position of the co-ordinate origin of the pixel map relative to the base
origin (given by base_x, base_y). Thusa point plotted at (0,0) will be plotted at column origin_x
from base_x. The co-ordinate origin also effectively defines the centre of projection when used as
a rendering destination.

br_uint_16 width, height

These members contain the dimensions of the visible region of the pixel map.

Data

void * pixels

When pixel data is directly accessible (see £1ags), this member points to an area of memory
containing the raw pixel data. It either points to the start of the memory occupied by the pixel map
or the last row_bytes of it. However, it always points to the byte of the left hand pixel of the ‘first’
row. For instance, in monochrome pixel maps it will point to the byte whose most significant bit
represents the left hand pixel of the first row. In true colour pixel maps it will point to the least
significant byte of the colour of the left hand pixel of the first row, which will be the blue component
in BR_PMT_RGB_888 pixel maps and the alpha component in BR_PMT_RGBA_8888 pixel maps.

Copyright © 1996 Argonaut Technologies Limited 2 7 9

br_pixelmap

br_int_16 row_bytes

This member defines the physical row length of the pixel map in terms of the byte difference
between pixels in the same column of adjacent rows. It will be negative if the pixel map memory is
inverted.

br_uint_16 base_x, base_y

These members define the top left of the start of pixel map data in terms of base_y as a number of
row_bytes, and base_x as a smaller offset from this.

br_pixelmap * map

For indexed pixel maps (of type BR_PMT_INDEX_ ?), this member points to a colour map. This is

used to obtain the ‘true colour’ corresponding to a particular index.

Supplementary

char * identifier

Pointer to unique, zero terminated, character string (or NULL if not required).

If the pixel map is loaded or imported, the identifier will have been set using BrResStrDup () 4.

void * user

This member may be used by the application for its own purposes. It is initialised to NULL upon
allocation (if allocated by BRender), and not accessed by BRender thereafter.

void * device

Some platform specific functions can return a pixel map structure corresponding to an area of video
memory or other hardware. This member enables pixel map functions to determine whether the pixel
map is in memory or not. [t should not be used by the application.

2 80 Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

Operations

BrPixelmapFill ()

Description: Fill a pixel map with a given value.
Declaration: void BrPixelmapFill (br_pixelmap* dat, br_uint_32 colour)
Arguments: br_pixelmap * dat

A pointer to the pixel map to be filled.

br_uint_32 colour

Value to set each pixel to.

BrPixelmapRectangleFill ()

Description: Fill a rectangular window in a pixel map with a given value.

Declaration: void BrPixelmapRectangleFill (br_pixelmap* dst,
br_int 16 x, br_int_16 y, br_uint_ 16 w, br uint_16 h,
br_uint_32 colour)

Arguments: br_pixelmap * dst
A pointer to the destination pixel map.
br_int_16 x,y
Co-ordinates of the rectangle’s top left corner.
br_uint_16 w,h
Rectangle width and height (in pixels).
br uint_ 32 colour
Value to set each pixel to.

Example:
br_int_16 x,y;
br_uint_16 w,h;

br_pixelmap *offscreen;

BrPixelmapRectangleFill (offscreen,x,y,w,h,0);

BrPixelmapLine ()

Description: ~ Draw a line in a pixel map between (x1,y1) and (x2,y2), clipping it to the edges
of the pixel map if necessary.

Copyright © 1996 Argonaut Technologies Limited 2 8 1

br_pixelmap

Declaration: void BrPixelmapLine (br_pixelmap* dst, br_int_16 x1,
br_int_16 yl, br_int_16 x2, br_int_16 y2,
br_uint_32 colour)

Arguments: br_pixelmap * dst
A pointer to the destination pixel map.
br_int_16 x1,yl,x2,y2
Co-ordinates of the line’s endpoints.
br uint_32 colour

Value to set each pixel in the line to.

BrPixelmapPixelSet ()

Description: Set a pixel to a given value.

Declaration: void BrPixelmapPixelSet (br_pixelmap* dst, br_int_16 x,
br_int_16 y, br_uint_32 colour)

Arguments: br_pixelmap * dst
A pointer to the destination pixel map.
br_int_16 x,y
Pixel co-ordinates.
br_uint_32 colour

Pixel value.

BrPixelmapPixelGet ()

Description: Get the value of a particular pixel

Declaration: br_uint_32 BrPixelmapPixelGet (const br_pixelmap* src,
br_int_ 16 x, br_int_16 y)

Arguments: const br_pixelmap * src
A pointer to the source pixel map from which to read the pixel.
br_int_16 x,y
Pixel co-ordinates.
Result: br_uint_32 colour
Pixel value. If the point is off-screen, zero will be returned.

Remarks: ~ Some device oriented pixel maps may not support read operations.

2 8 2 Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

BrPixelmapText ()

Description:

Declaration:

Arguments:

Example:

Write a string into a pixel map in a given font.

void BrPixelmapText (br_pixelmap* dst, br_int_16 x,
br_int 16 y, br_uint_32 colour, const br_font* font,
const char* text)

br_pixelmap * dst

A pointer to the destination pixel map.
br_int_16 x,y

Co-ordinates of text’s top left corner.
br_uint_32 colour

Value to set each text pixel to.

const br_font * font

A pointer to a BRender font, or NULL for the default font.
The following pointers are available:

BrFontFixed3x5

BrFontProp4x6

BrFontProp7x9

See brfont.h for precise declaration.

const char * text

A string.

br_uint_32 colour;

br_pixelmap *pmap;

BrPixelmapText (pmap, 0,0, colour,BrFontProp7x9, "Example text...”);

BrPixelmapTextF ()

Description:

Declaration:

Write a ‘print £’ formatted string into a pixel map in a given font. The
function will accept format strings and arguments just as for the standard
printf () function.

void BrPixelmapTextF (br_pixelmap* dst, br_int_16 x,
br_int 16 y, br_uint_32 colour, const br_font* font,
const char* fmt, ...)

Copyright © 1996 Argonaut Technologies Limited 2 8 3

br_pixelmap

Arguments: br_pixelmap * dst
A pointer to the destination pixel map.
br_int_16 x, y
Co-ordinates of text’s top left corner.
br uint_32 colour
Value to set each text pixel to.
const br font * font
A pointer to a BRender font, or NULL for the default font.
The following pointers are available:
BrFontFixed3x5
BrFontProp4x6
BrFontProp7x9
See brfont.h for precise declaration.
const char * fmt
A format string (as for printf ()).

Example:

br_uint_32 colour;

br_pixelmap *pmap;

BrPixelmapTextF

(pmap,0,0,255,NULL, "Frames/Sec = %16g Polys/Sec = %16g"

, TIMING_FRAMES/ ((end_time-start_time)/ (double)CLOCK_RATE)
, total_faces/((end_time-start_time)/(double)CLOCK_RATE)
)i

BrPixelmapTextWidth ()

Description: Find the width of a string for a given font and pixel map.

Declaration: br_uint_16 BrPixelmapTextWidth (const br_pixelmap* dst,
const br_font* font, const char* text)

Arguments: const br_pixelmap * dst

A pointer to a pixel map.

const br_font * font

A pointer to a BRender font, or NULL for the default font.

const char * text

A string.

2 8 4 Copyright © 1996 Argonaut Technologies Limited

Result:

See Also:

br_pixelmap

br uint_16

Returns the string width in pixels. If the text argumentis NULL, the width of
one character is returned.

BrPixelmapText () ;3

BrPixelmapTextHeight ()

Description:

Declaration:

Arguments:

Result:
See Also:

Find the height of a font for a given pixel map.

br uint_16 BrPixelmapTextHeight (const br_pixelmap* dst,
const br_font* font)

const br_pixelmap * dst

A pointer to a pixel map.

const br_font * font

A pointer to a BRender font, or NULL for the default font.
Returns the font height in pixels.

BrPixelmapText () 5,

Copy/Assign

The br_pixelmap,,, structure should not be copied by structure assignment. Copies should only be
made via construction. However, the pixels may be copied, in whole or in part using the following

functions.

BrPixelmapCopy ()

Description:

Declaration:

Arguments:

Example:

Copy the data in one pixel map to another. The source and destination pixel
maps must have the same type and dimensions.

void BrPixelmapCopy (br_pixelmap* dst,
const br_pixelmap* src)

br_pixelmap * dst
A pointer to the destination pixel map.
const br_pixelmap * src

A pointer to the source pixel map.

br_pixelmap *offscreen, *backdrop;

BrPixelmapCopy (offscreen, backdrop);

Copyright © 1996 Argonaut Technologies Limited 2 8 5

br_pixelmap

BrPixelmapRectangleCopy ()

Description: ~ Copy a rectangular window from one pixel map to another.

Declaration: void BrPixelmapRectangleCopy (br_pixelmap* dst,
br_int 16 dx, br_int_16 dy, const br_pixelmap* src,
br_int 16 sx, br_int_16 sy, br uint_16 w, br_uint_16 h)

Arguments: br_pixelmap * dst
A pointer to the destination pixel map.
br_int_16 dx,dy
Co-ordinates of the destination rectangle’s top left corner.
const br_ pixelmap * src
A pointer to the source pixel map.
br_int_16 sx,sy
Co-ordinates of the source rectangle’s top left corner.
br uint_16 w,h

Rectangle width and height (in pixels).

Access & Maintenance

Colour or texture maps and shade tables must be added to the registry if they are involved in
rendering a scene. They should not be modified during rendering,.

Colour maps and shade tables that have been added to the registry may be accessed by BRender
during rendering.

If any changes are made to colour maps or shade tables involved in rendering, they must be updated
before the next rendering in which they are involved.

Note that while texture maps and shade tables are pixel maps, the reverse does not apply. A pixel

map is only a texture map by virtue of being added to the registry as such. Similarly with a shade table.
Most importantly, a pixel map cannot be both! A texture map must be removed from the registry for
it to become just a pixel map, and only then could it be added as a shade table. The same applies with
roles interchanged. Note that this just applies to the instance of the br_pixelmap,,, data structure,
not to the memory that holds the pixel data. Therefore it is quite valid to have a texture map and

shade table sharing the same pixel memory (not that it is easy to envisage a useful effect of doing so).

BrMapAdd ()

Description: Add a texture map to the registry, updating it as necessary. All texture maps
must be added to the registry before they are subsequently involved in
rendering.

2 8 6 Copyright © 1996 Argonaut Technologies Limited

Declaration:

Arguments:

Result:

See Also:

br_pixelmap

br_pixelmap* BrMapAdd (br_pixelmap* pixelmap)
br_pixelmap * pixelmap

A pointer to a texture map.

br_pixelmap *

Returns a pointer to the added texture map, else NULL if unsuccessful.

BrMapUpdate () ,3;, BrMapAddMany () ,3;, BrPixelmapLoad () 5,
BrMapFind () ,;, BrMapRemove () .

BrMapAddMany ()

Description:

Declaration:

Arguments:

Result:

See Also:

Add a number of texture maps to the registry, updating them as necessary.

br_uint_32 BrMapAddMany (br_pixelmap* const* pixelmaps,
int n)

br_pixelmap * const * pixelmaps

A pointer to an array of pointers to texture maps.

int n

Number of texture maps to add to the registry.
br_uint_32

Returns the number of texture maps added successfully.

BrMapUpdate () ,4;, BrMapAdd () ,5;, BrMapRemove () s,
BrMapRemoveMany () ,3

BrMapUpdate ()

Description:
Declaration:

Arguments:

See Also:

Update a texture map.

void BrMapUpdate (br_pixelmap* pixelmap, br_uint_16 flags)
br_pixelmap * pixelmap

A pointer to a texture map.

br _uint_16 flags

Texture map update flags. In general, BR_MaPU_ALL should be used.

BrMapAdd () 55

BrMapRemove ()

Description:

Declaration:

Copyright © 1996 Argonaut Technologies Limited

Remove a texture map from the registry.

br_pixelmap* BrMapRemove (br_pixelmap* pixelmap)

287

br_pixelmap

Arguments: br_pixelmap * pixelmap
A pointer to a texture map.
Result: br_pixelmap *
Returns a pointer to the item removed.
See Also: BrMapAdd () ,;

BrMapRemoveMany ()

Description: Remove a number of texture maps from the registry.

Declaration: br_uint_32 BrMapRemoveMany (br_pixelmap* const* pixelmaps,
int n)

Arguments: br_pixelmap * const * pixelmaps
A pointer to an array of pointers to texture maps.
int n
Number of texture maps to remove from the registry.
Result: br_uint_ 32
Returns the number of texture maps removed successfully.

See Also: BrMapAddMany () ;

BrTableAdd()

Description: Add a shade table to the registry, updating it as necessary. All shade tables must
be added to the registry before they are used subsequently.

Declaration: br_pixelmap* BrTableAdd (br_pixelmap* pixelmap)
Arguments: br_pixelmap * pixelmap
A pointer to a shade table.
Result: br_pixelmap *
Returns a pointer to the added shade table, else NULL if unsuccessful.

See Also: BrTableUpdate () ,3, BrTableAddMany () 54, BrPixelmapLoad () 5,
BrTableFind () ,3, BrTableRemove () 5

BrTableAddMany ()

Description: Add a number of shade tables to the registry, updating them as necessary.

Declaration: br_uint_32 BrTableAddMany (br_pixelmap* const* pixelmaps,
int n)

2 8 8 Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

Arguments: br_pixelmap * const * pixelmaps
A pointer to an array of pointers to shade tables.
int n
Number of shade tables to add to the registry.
Result: br_uint_32
Returns the number of shade tables added successfully.

See Also: BrTableUpdate () ., BrTableAdd () ,4, BrTableRemove () 5,
BrTableRemoveMany (),

BrTableUpdate ()

Description: ~ Update a shade table.

Declaration: void BrTableUpdate (br_pixelmap* pixelmap,
br_uint_16 flags)

Arguments: br_pixelmap * pixelmap
A pointer to a shade table.
br _uint_16 flags
Shade table update flags. In general, BR_TABU_ALL should be used.
See Also: BrTableAdd () .

BrTableRemove ()

Description: Remove a shade table from the registry.
Declaration: br_pixelmap* BrTableRemove (br_pixelmap* pixelmap)
Arguments: br_pixelmap * pixelmap
A pointer to a shade table.
Result: br_pixelmap *
Returns a pointer to the shade table removed.
See Also: BrTableAdd ()

BrTableRemoveMany ()

Description: Remove a number of shade tables from the registry.

Declaration: br_uint_32
BrTableRemoveMany (br_pixelmap* const* pixelmaps, int n)

Copyright © 1996 Argonaut Technologies Limited 2 89

br_pixelmap

Arguments: br_pixelmap * const * pixelmaps
A pointer to an array of pointers to shade tables.
int n
Number of shade tables to remove from the registry.
Result: br_uint_32
Returns the number of shade tables removed successfully.
See Also: BrTableAddMany ()

Referencing & Lifetime

Pixel maps may be freely and multiply referenced. Once added to the registry as a texture map or
shade table, there are certain restrictions, but they may still be multiply referenced. Maps and tables
must have been added to the registry if they will be involved in rendering. Texture maps and shade
tables must be maintained while they are in the registry or being referenced.

Initialisation

The structure is initialised by the various construction functions. Pixel maps should not be created or
initialised by any other means.

Construction & Destruction

Apart from platform specific functions, pixel maps should only be constructed by the following
BRender functions. Destruction should naturally be performed by the corresponding ‘free’ function,
usually BrPixelmapFree () ,o;. Note that texture maps and shade tables should be removed from the
registry before destruction.

BrPixelmapAllocate ()

Description: Allocate a new pixel map.

Declaration: br_pixelmap* BrPixelmapAllocate (br_uint_8 type,
br _uint_16 w, br_uint 16 h, void* pixels, int flags)

Arguments: br_uint_8 type
Pixel map type.
br_uint_16 w
Width in pixels.
br_uint_16 h
Height in pixels.

2 90 Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

void * pixels

A pointer to an existing block of memory. If NULL, the pixel memory is
allocated automatically using BrResAllocate () 4.

The calculation obtaining the minimum size required for the block of memory
is non-obvious. It is row_bytes*h., and row_bytes is not simply w¥*bits-
per-pixel/8. To determine row_bytes, it is probably simplest to call this
function with a dummy, non-NULL pointer (address of an automatic, say), and
record the value of row_bytes returned in the br_pixelmap,,, (free it
immediately afterwards). The memory pointed to by pixels is not accessed
by this function.

int flags
Supply either BR_PMAF_NORMAL or BR_PMAF_INVERTED. If the latter, the
function will automatically set the pixels member of the returned pixel map

(whether supplied or not) to be at the start of the final row of pixel map memory
(row_bytes isnegative).

Flags

Meaning

BR_PMAF_NORMAL Pixel map ordinate x increases, and y decreases as

addresses within the memory block ascend.

BR_PMAF_INVERTED |Pixel map ordinate x increases, and y increases as

addresses within the memory block ascend.

Result:

br_pixelmap *

Returns a pointer to the new pixel map, or NULL if unsuccessful.

BrPixelmapAllocateSub ()

Description:

Declaration:

Arguments:

Result:

Remarks:

Allocate a pixel map as part of an existing pixel map. The new pixel map is
clipped to the existing pixel map.

br_pixelmap* BrPixelmapAllocateSub (br_pixelmap* pm,
br uint_16 x, br_uint_16 y, br uint_16 w, br_uint_16 h)

br_pixelmap * pm

A pointer to an existing pixel map.

br _uint_16 x,y

Co-ordinates of the top left of the new pixel map in the existing pixel map.
br uint_16 w,h

Width and height of the new pixel map.

br_pixelmap *

Returns a pointer to the new pixel map, or NULL if unsuccessful.

The effective origin is set that of the existing pixel map.

Copyright © 1996 Argonaut Technologies Limited 29 1

br_pixelmap

BrPixelmapMatch ()

Given a pixel map, allocate either a depth buffer or an off-screen colour buffer

Description:

with the same dimensions.

Declaration:

Arguments:

br_pixelmap* BrPixelmapMatch (const br_ pixelmap* src,
int match_type)

const br pixelmap * src

A pointer to the source pixel map.

int match_type

The type of matching pixel map required.

Match Type

Match Method

BR_PMMATCH_OFFSCREEN

Create a pixel map of the same type and dimensions.

BR_PMMATCH_DEPTH_16

Create an appropriate 16 bit depth buffer.

Result: br_pixelmap *

Returns a pointer to the matching pixel map.

BrPixelmapClone ()

Create a pixel map of the same type and dimensions and copy the pixel data.

br_pixelmap* BrPixelmapClone (const br_pixelmap* src)

Description:
Declaration:
Arguments: const br_pixelmap * src
A pointer to the source pixel map.
Result: br_pixelmap *
Returns a pointer to the new pixel map.
Example:

br_pixelmap *image,

image =

working_copy =

*working_copy;

BrPixelmapLoad (“backdrop.pix”) ;

BrPixelmapClone (image) ;

BrPixelmapFree ()

Description:

Declaration:

292

Deallocate a pixel map and any associated memory.

void BrPixelmapFree (br_pixelmap* pmap)

Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

Arguments: br_pixelmap * pmap

A pointer to a pixel map.

Supplementary

BrPixelmapPixelSize ()
Description: Find the pixel size for a given pixel map.
Declaration: br_uint_16 BrPixelmapPixelSize (const br_pixelmap* pm)
Arguments: const br_ pixelmap * pm
A pointer to a pixel map.
Result: br_uint_16

Returns the size of each pixel, in bits.

BrPixelmapChannels ()

Description: Find the channels available for a given pixel map.
Declaration: br_uint_16 BrPixelmapChannels (const br_pixelmap* pm)
Arguments: const br_pixelmap * pm
A pointer to a pixel map.
Result: br_uint_16

Returns a mask giving the available channels, being a combination of the
following bit value symbols:

BR_PMCHAN_INDEX
BR_PMCHAN_RGB

BR_PMCHAN_DEPTH
BR_PMCHAN_ALPHA

BR_PMCHAN_YUV

BrMapCount ()

Description: ~ Count the number of registered texture maps whose names match a given
search pattern. The search pattern can include the standard wild cards “*’ and
‘P’

Declaration: br_uint_32 BrMapCount (const char* pattern)

Copyright © 1996 Argonaut Technologies Limited 2 9 3

br_pixelmap

Arguments:

Result:

See Also:

const char * pattern

Search pattern.

br_uint_32

Returns the number of texture maps matching the search pattern.

BrMapEnum () ,y,, BrMapFind () 55

BrMapEnum ()

Description:

Declaration:

Arguments:

294

Result:

Example:

Calls a call-back function for every texture map matching a given search
pattern. The call-back is passed a pointer to each matching item, and its second
argument is an optional pointer supplied by the user. The search pattern can
include the standard wild cards ‘*’ and ‘?’. The call-back itself returns a
br_uint_32,, value. The enumeration will halt at any stage if the return
value is non-zero.

br_uint_32 BrMapEnum(const char* pattern,
br_map_enum_cbfn* callback, void* arg)

const char * pattern

Search pattern.

br_map_enum_cbfn * callback

A pointer to a call-back function.

void * arg

An optional argument to pass to the call-back function.
br_uint_32

Returns the first non-zero call-back return value, or zero if all matching texture
maps are enumerated.

br_uint_32 BR_CALLBACK test_callback (br_pixelmap* map, void* arg)

{

{

br_uint_32 count;

return (count) ;

br_uint_32 enum;

enum = BrMapEnum(“map”, &test_callback,NULL) ;

Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

BrMapFind ()

Description:

Declaration:

Arguments:

Result:

See Also:

Find a texture map in the registry by name. A call-back function can be setup
to be called if the search is unsuccessful. The search pattern can include the
standard wild cards “*’ and ‘?’.

br_pixelmap* BrMapFind(const char* pattern)
const char * pattern

Search pattern.

br_pixelmap *

Returns a pointer to the texture map if found, otherwise NULL. If a call-back
exists and is called, the call-back’s return value is returned.

BrMapFindHook () 55, BrMapFindMany () o5

BrMapFindMany ()

Description:

Declaration:

Arguments:

Result:

See Also:

Find a number of texture maps in the registry by name. The search pattern can
include the standard wild cards “*’ and ‘?’.

br_uint_32 BrMapFindMany (const char* pattern,
br_pixelmap** pixelmaps, int max)

const char * pattern

Search pattern.

br_pixelmap ** pixelmaps

A pointer to an array of pointers to texture maps.
int max

Maximum number of texture maps to find.

br uint_32

Returns the number of texture maps found. The pointer array is filled with
pointers to the found texture maps.

BrMapFind () ,y5, BrMapFindHook () ;s

BrMapFindHook ()

Description:
Declaration:

Arguments:

Functions to set up a call-back.
br map find cbfn* BrMapFindHook (br_map_find cbfn* hook)
br_map_find cbfn * hook

A pointer to a call-back function.

Copyright © 1996 Argonaut Technologies Limited 2 9 5

br_pixelmap

Effects: If BrMapFind (), is unsuccessful and a call-back has been set up, the call-
back is passed the search pattern as its only argument. The call-back should
then return a pointer to a substitute or default texture map.

For example, a call-back could be set up to return a default texture map if the
desired texture map cannot be found in the registry.

The function BrMapFindFailedLoad (), is provided and will probably be
sufficient in many cases.

Result: br_map_find cbfn *
Returns a pointer to the old call-back function.

Example:
br_map BR_CALLBACK * test_callback(char* pattern)
{ Dbr_map* default_map;

return (default_map) ;
{ Dbr_map* map;
BrMapFindHook (&test_callback) ;

map = BrMapFind(“non_existent_map”);

See Also: BrMapFindFailedLoad ()

BrMapFindFailedLoad ()

Description: ~ 'This function is provided as a suitable function to supply to
BrMapFindHook () 5.

Declaration: br_pixelmap* BrMapFindFailedLoad (const char* name)
Arguments: const char * name
The name supplied to BrMapFind () s

Effects: Attempts to load the texture map from the filing system using name as the
filename. Searches in current directory, if not found tries, in order, the
directories listed in BRENDER_PATH (if defined). If successful, sets this
name as the identifier of the loaded texture map and adds the texture map to
the registry.

Result: br_pixelmap *

Returns a pointer to the texture map, if found, else NULL.
Example:
BrMapFindHook (BrMapFindFailedLoad) ;

2 9 6 Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

BrTableCount ()

Description:

Declaration:

Arguments:

Result:

See Also:

Count the number of registered shade tables whose names match a given search
pattern. The search pattern can include the standard wild cards “*’ and ‘?’.

br_uint_32 BrTableCount (const char* pattern)
const char * pattern

Search pattern.

br_uint_32

Returns the number of shade tables matching the search pattern.

BrTableEnum/(),s;, BrTableFind () 5o

BrTableEnum ()

Description:

Declaration:

Arguments:

Result:

Example:

Calls a call-back function for every shade table matching a given search pattern.
The call-back is passed a pointer to each matching shade table, and its second
argument is an optional pointer supplied by the user. The search pattern can
include the standard wild cards ‘*’ and ‘?’. The call-back itself returns a
br_uint_32,, value. The enumeration will halt at any stage if the return
value is non-zero.

br_uint_32 BrTableEnum(const char* pattern,
br_table_enum cbfn* callback, void* arg)

const char * pattern

Search pattern.

br_table_enum cbfn * callback

A pointer to a call-back function.

void * arg

An optional argument to pass to the call-back function.
br uint_32

Returns the first non-zero call-back return value, or zero if all matching shade
tables are enumerated.

br_uint_32 BR_CALLBACK test_callback (br_pixelmap* table, void* arg)

{

{

br_uint_32 count;

return (count) ;

br_uint_32 enum;

enum = BrTableEnum(“Table”, &test_callback, NULL) ;

Copyright © 1996 Argonaut Technologies Limited 2 9 7

br_pixelmap

BrTableFind()

Description:

Declaration:

Arguments:

Result:

See Also:

Find a shade table in the registry by name. A call-back function can be setup to
be called if the search is unsuccessful. The search pattern can include the
standard wild cards “*’ and ‘7.

br_pixelmap* BrTableFind(const char* pattern)

const char * pattern

Search pattern.

br_pixelmap *

Returns a pointer to the shade table if found, otherwise NULL. If a call-back
exists and is called, the call-back’s return value is returned.
BrTableFindHook () ,y, BrTableFindMany () 5o

BrTableFindMany ()

Description:

Declaration:

Arguments:

Result:

See Also:

298

Find a number of shade tables in the registry by name. The search pattern can
include the standard wild cards “*’ and ‘?’.

br_uint_32 BrTableFindMany (const char* pattern,
br_pixelmap** pixelmaps, int max)

const char * pattern

Search pattern.

br_pixelmap ** pixelmaps

A pointer to an array of pointers to shade tables.
int max

Maximum number of shade tables to find.

br uint_32

Returns the number of shade tables found. The pointer array is filled with
pointers to the found shade tables.

BrTableFind () ,y, BrTableFindHook () 5y

Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

BrTableFindHook ()

Description:

Declaration:

Arguments:

Result:

Example:

Functions to set up a call-back. [f BrTableFind () , is unsuccessful and a call-
back has been set up, the call-back it is passed the search pattern as its only
argument. The call-back should then return a pointer to a substitute or default
shade table.

For example, a call-back could be set up to return a default shade table if the
desired shade table cannot be found in the registry.

The function BrTableFindFailedLoad (), is provided and will probably
be sufficient in many cases.

br table find cbfn*
BrTableFindHook (br_table_find cbfn* hook)

br table find cbfn * hook
A pointer to a call-back function.
br_table_find cbfn *

Returns a pointer to the old call-back function.

br_table BR_CALLBACK * test_callback(char* pattern)
{ br_table* default_table;

return (default_table);

{ br_table* table;

BrTableFindHook (&test_callback) ;
table = BrTableFind (“non_existent_table”);

}
See Also:

BrTableFindFailedLoad () ,y

BrTableFindFailedLoad ()

Description:

Declaration:

Arguments:

"This function is provided as a suitable function to supply to
BrTableFindHook () .

br_pixelmap* BrTableFindFailedLoad(const char* name)
const char * name

The name supplied to BrTableFind () .

Copyright © 1996 Argonaut Technologies Limited 2 99

br_pixelmap

Effects: Attempts to load the shade table from the filing system using name as the
filename. Searches in current directory, if not found tries, in order, the
directories listed in BRENDER_PATH (if defined). If successful, sets this
name as the identifier of the loaded shade table and adds the shade table to the
registry.

Result: br_pixelmap *

Returns a pointer to the shade table, if found, else NULL.

Example:
BrTableFindHook (BrTableFindFailedLoad) ;

3 OO Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

Import & Export

BrPixelmapFileCount ()

Description:

Declaration:

Arguments:

Effects:

Result:

Locate a given file and count the number of pixel maps in it.

br_uint_32 BrPixelmapFileCount (const char* filename,
br uint_16* num)

const char * filename

Name of the file containing the pixel maps to count.

br_uint_16 * num

Pointer to the variable in which to store the number of pixel maps counted in

the file. If NULL, the file will still be located and appropriate success returned,
but no count will be made.

Searches for £i1ename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH (if
defined). If a file is found, will count the number of pixel maps stored in it.

br uint_32

Returns zero if the file was found (even if it is not a pixel map file), non-zero
otherwise.

BrPixelmapLoad ()

Description:
Declaration:

Arguments:

Effects:

Result:

See Also:

Load a pixel map. Note that they are not added to the registry.
br_pixelmap* BrPixelmapLoad(const char* filename)
const char * filename

Name of the file containing the pixel map to load.

Searches for £i 1ename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH Gf
defined).

br_pixelmap *
Returns a pointer to the loaded pixel map, or NULL if unsuccessful.

BrPixelmapLoadMany () ;,, BrPixelmapSave () ;y, BrMapAdd () g,
BrTableAdd () .

BrPixelmapLoadMany ()

Description:

Copyright © 1996 Argonaut Technologies Limited

Load a number of pixel maps. Note that they are not added to the registry.

301

br_pixelmap

Declaration: br_uint_32 BrPixelmaplLoadMany (const char* filename,
br_pixelmap** pixelmaps, br_uint_16 num)

Arguments: const char * filename
Name of the file containing the pixel maps to load.
br_pixelmap ** pixelmaps
A non-NULL pointer to an array of pointers to pixel maps.
br uint_16 num
Maximum number of pixel maps to load.

Effects: Searches for £ilename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH Gf
defined).

Result: br_uint_32

Returns the number of pixel maps loaded successfully. The pointer array is
filled with pointers to the loaded pixel maps.

See Also: See BrPixelmapFileCount (), to determine the number of pixel maps in a
file.

BrFmt BMPLoad ()

Description: Load a pixel map in the BMP format.

Declaration: br_pixelmap* BrFmtBMPLoad (const char* name,
br_uint_32 flags)

Arguments: const char * name
Name of the file containing the pixel map.
br_uint_32 flags

Either BR_PMT_RGBX_888 or BR_PMT_RGBA_8888, when the source pixel map
uses 32 bits per pixel. Zero otherwise.

Effects: Searches for £ilename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH Gf
defined).

Result: br_pixelmap *

Returns a pointer to the loaded pixel map.

BrFmtGIFLoad ()

Description: Load a pixel map in the GIF format.

Declaration: br_pixelmap* BrFmtGIFLoad (const char* name,
br_uint_32 flags)

3 02 Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

Arguments: const char * name
Name of the file containing the pixel map.
br_uint_32 flags

Either BR_PMT_RGBX_888 or BR_PMT_RGBA_8888, when the source pixel map
uses 32 bits per pixel. Zero otherwise.

Effects: Searches for £ilename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH (if
defined).

Result: br_pixelmap *

Returns a pointer to the loaded pixel map.

BrFmt IFFLoad ()

Description: ~ Load a pixel map in the IFF format.

Declaration: br_pixelmap* BrFmtIFFLoad(const char* name,
br_uint_32 flags)

Arguments: const char * name
Name of the file containing the pixel map.
br_uint_32 flags

Either BR_PMT_RGBX_888 or BR_PMT_RGBA_8888, when the source pixel map
uses 32 bits per pixel. Zero otherwise.

Effects: Searches for £ilename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH (if
defined).

Result: br_pixelmap *

Returns a pointer to the loaded pixel map.

BrFmtTGALoad ()

Description: ~ Load a pixel map in the TGA format.

Declaration: br_pixelmap* BrFmtTGALoad (const char* name,
br_uint_32 flags)

Arguments: const char * name

Name of the file containing the pixel map.
br_uint_32 flags

Either BR_PMT_RGBX_888 or BR_PMT_RGBA_8888, when the source pixel map
uses 32 bits per pixel. Zero otherwise.

Copyright © 1996 Argonaut Technologies Limited 3 03

br_pixelmap

Effects: Searches for £ilename, if no path specified with file looks in current directory,
if not found tries, in order, the directories listed in BRENDER_PATH Gf
defined).

Result: br_pixelmap *

Returns a pointer to the loaded pixel map.

BrPixelmapSave ()

Description: ~ Save a pixel map to a file.

Declaration: br_uint_32 BrPixelmapSave (const char* filename,
const br_pixelmap* pixelmap)

Arguments: const char * filename
Name of the file to save the pixel map to.
const br_ pixelmap * pixelmap
A pointer to a pixel map.
Effects: Writes the pixel map to a file".
Result: br_uint_ 32

Returns NULL if the pixel map could not be saved.

BrPixelmapSaveMany ()

Description: ~ Save a number of pixel maps to a file.

Declaration: br_uint_32 BrPixelmapSaveMany (const char* filename,
const br_ pixelmap* const* pixelmaps, br_uint_16 num)

Arguments: const char * filename
Name of the file to save the pixel maps to.
const br_ pixelmap * const * pixelmaps

A pointer to an array of pointers to pixel maps. If NULL, all registered texture
maps and shade tables are saved (irrespective of num).

br_uint_16 num

Number of pixel maps to save.
Effects: Writes the pixel maps to a file'.
Result: br_uint_32

Returns the number of pixel maps saved successfully.

* Any existing file of the same name is overwritten.
T Any existing file of the same name is overwritten.

3 04 Copyright © 1996 Argonaut Technologies Limited

br_pixelmap

Copyright © 1996 Argonaut Technologies Limited 3 O 5

br_pool

br_ pool

The Structure

This structure holds details of a memory block pool (an optimised memory allocation scheme on a per
data structure basis). This is ideal for cases where a particular data structure has intensive dynamic
storage, e.g. matrices.

Note that currently, there is no automatic contraction of Pools, nor are there functions to achieve this
(with the current implementation it would have a relatively high processing overhead). Therefore, it
may be wise to destroy Pools when possible, if they have irregular or sporadic use, or memory is at a
premium.

The typedef

(See pool.h for precise declaration and ordering)

Primary

br_pool_block * free Linked list of unused blocks
br_uint_32 block_size Sise of each item

br_uint_32 chunk_size Number of blocks to increase pool by
int mem_type Memory class of blocks

Related Functions

Memory Management

BrAllocatorSet () ;.

Members
Primanry

br_pool_block * free

This is a pointer to the next available block of memory (of size block_size). When freed, blocks
are castas br_pool_block;,,and inserted at the head of the list to keep track of them. An allocation
simply removes the item at the head from the list. It may then be initialised as required.

br uint 32 block size

This is the size of each item, or memory block. Its value must be greater than or equal to
sizeof (br_pool_block), if not, memory corruption will ensue. This is typically 4 bytes, but
given that pools are intended for larger structures, this is not a significant restriction. See
BrPoolAllocate () 3.

3 06 Copyright © 1996 Argonaut Technologies Limited

br_pool

br_uint_32 chunk_size
When all the blocks in a pool are allocated (or the pool is empty), the value of this member determines

the number of blocks that will be added to the pool to enable further block allocations.

uint mem_type

This is the memory class from which the blocks should be allocated. Any number of pools may exist
for a given memory class.

Operations

BrPoolBlockAllocate ()

Description: Allocate a block from a pool. If the pool is full, it will expand as necessary.
Declaration: void* BrPoolBlockAllocate (br_pool* pool)
Arguments: br_pool * pool
A pointer to the relevant pool.
Result: void *

Returns a pointer to the allocated block, or NULL if unsuccessful.

BrPoolBlockFree ()

Description: Deallocate a block from a pool.
Declaration: void BrPoolBlockFree (br_pool* pool, void* b)
Arguments: br_pool * pool

A pointer to the relevant pool.

void * b

A pointer to the block to deallocate.

BrPoolEmpty ()

Description: ~ Mark all blocks in a pool as unused.
Declaration: void BrPoolEmpty (br_pool* pool)
Arguments: br_pool * pool

A pointer to the pool to be emptied.

Copyright © 1996 Argonaut Technologies Limited 3 O 7

br_pool

Copy/Assign

Do not copy.

Access & Maintenance

No members should be modified. The structure will be maintained until the pool is freed using
BrPoolFree () ;. No additional maintenance required.

Referencing & Lifetime

Do not reference a copy. Ensure that references to a pool descriptor do not outlast the pool.

Initialisation
Initialisation is performed by BrPoolAllocate () .

Effectively this sets free to NULL, block_size to the specified value (aligned appropriately),
chunk_size to the specified value, and mem_type to the specified value.

Construction & Destruction

Memory pool structures should be constructed by BrPoolAllocate () 5, as this will allocate the
pool descriptors from the pool resource class. Some Pool functions depend on this.

BrPoolAllocate ()

Description: Create a new block pool.

Declaration: br_pool* BrPoolAllocate (int block_size, int chunk_size,
br_uint_8 mem_type)

Arguments: int block_size

The size of each block, in bytes. Minimum value is 1, though note that this size
will be rounded up to the next multiple of a suitable alignment factor, typically
8 (BR_POOL_ALIGN+1). Pools are not intended for simple data structures.
int chunk_size

The number of blocks to allocate each time the pool becomes full. The value
should be between 1 and say, 10% of the maximum number of blocks allocated
at any one time. Naturally, there is a compromise between saving processing

overhead for each memory allocation (only when the pool grows), and saving
memory overhead in terms of average unused blocks.

br_uint_8 mem_type

Memory type. More than one pool may be created for a particular memory class.

3 08 Copyright © 1996 Argonaut Technologies Limited

br_pool

Result: br_pool *
Returns a pointer to the new pool, or NULL if it could not be created.

BrPoolFree ()
Description: ~ Deallocate an entire pool, thereby losing any blocks it may contain.
Declaration: void BrPoolFree (br_pool* pool)

Arguments: br_pool * pool
A pointer to the pool to be deallocated.

Supplementary
Given that Pools are registered in the “POOL” resource class, the resource class supplementary

functions are available.

Copyright © 1996 Argonaut Technologies Limited 3 09

br_pool_block

br pool_block

The Structure

This structure is simply used as a means of ‘spiking’ freed pool blocks until they can be reused.

(See pool.h for precise declaration and ordering)

The typedef

Primary
br_pool_block * next Pointer to next free block

Related Functions

Memory Management

BrPoolBlockAllocate () ;,;, BrPoolBlockFree () 5.

Members
Primanry
br_pool_block * next

A pointer to the next free pool block. This is really an area of memory with size as specified in the
pool descriptor (br_pool,,).

Copy/Assign

Don’t copy or reference.

Access & Maintenance

Should not be accessed by the applications programmer.

Referencing & Lifetime

Should not be referenced by the applications programmer.

3 1 O Copyright © 1996 Argonaut Technologies Limited

br_pool_block

Initialisation

When a pool block is spiked onto the free linked list, it is cast to this structure, the next member is
set to point to free, and free is then set to point to this.

Construction & Destruction

The structure is only used for casting purposes.

Copyright © 1996 Argonaut Technologies Limited 3 1 1

br_primitive
br primitive

The Structure

The primitive is an item of rendering data produced in the second phase of rendering. It is typically
a lit face of a model, transformed into screen co-ordinates. It contains sufficient information (some
private) to be depth sorted and rendered to the destination pixel map. The application programmer
will only be handling primitives as far as is necessary to determine whether the primitive should
appear and in what order it should be rendered. Primitives are only generated by BRender.

The typedef

(See order.h fora precise declaration)

Properties

br_uint_16 type Primitive type

br_material * material Material from which primitive was generated
Organisation

br_primitive * next Next primitive (when in bucket)

Related Functions

For details of how to specify that a primitive call-back function should be called during rendering see
BrZsPrimitiveCallbackSet () ;. To determine into which bucket a primitive would be inserted
see BrZsPrimitiveBucketSelect () ;5. 10 insert a primitive into an order table see
BrZsOrderTablePrimitiveInsert () ;.

Related Structures

See br_order_table,,, for the container into which primitives are inserted. See
br_primitive_cbfn,,; for details of how to customise primitive insertion into order tables.

Members

Properties

br_uint_16 type

There are currently three types of primitive: point, line and triangle. This member indicates the type
of this primitive. It should not be modified. The following table lists the symbols defining the value
of each type.

Primitive Type Description

BR_PRIMITIVE_POINT The primitive is a point defined by a single vertex

3 1 2 Copyright © 1996 Argonaut Technologies Limited

br_primitive

BR_PRIMITIVE_LINE The primitive is a line defined by two vertices

BR_PRIMITIVE_TRIANGLE | The primitive is a triangle defined by three vertices

br material * material

The material assigned to the face of the model from which the primitive was generated (explicitly or
by inheritance).

Organisation

br_primitive * next

Each bucket within an order table is a linked list of primitives. The primitive contains the links in
the form of this pointer. When a primitive is inserted into a bucket, it is inserted at the head (the first
bucket in the list). Upon rendering the buckets are rendered from the head onwards. This member
should not be modified.

Copy/Assign

Do not copy primitives.

Access & Maintenance

Primitives are only generated by BRender, and are primarily for internal use. The applications
programmer is not expected to traverse or maintain primitives. Some members may be usefully read,
but modification is not encouraged for members other than material.

Referencing & Lifetime

Primitives are allocated from the primitive heap as supplied to BrZsBegin () ,,. They are valid until
the next call of BrZsSceneRenderBegin () 5, when the primitive heap will be overwritten with new
primitives - unless, of course a different one is set up.

Construction & Destruction

Primitives can only be constructed through the rendering process. They are never destroyed, but are
overwritten.

Copyright © 1996 Argonaut Technologies Limited 3 1 3

br_primitive

3 1 4 Copyright © 1996 Argonaut Technologies Limited

br_primitive_cbfn

br primitive_cbfn

The Call-Back Function

This type defines a call-back function, which can be specified by using the function
BrZsPrimitiveCallbacksSet () 4. [tis called for each primitive generated from a model actor in the
actor hierarchies supplied to BrZsSceneRender (),, and BrZsSceneRenderAdd (),, (it may also
be called by BrZsModelRender () ,5,). It enables an application to perform customised insertion of
primitives into order tables, or to perform computations that require information only obtainable just
after a primitive has been generated by the rendering engine.

The typedef

(See zsproto.h fora precise declaration)

void br_primitive_cbfn (br_primitive*, br_actor*, const br_model*, const br_material*,
br_order_table*, const br_scalar*)
Primitive call-back

Related Functions

For details of how to specify that a primitive call-back function should be called during rendering see
BrZsPrimitiveCallbackSet () j.

Functions dedicated for use within primitive call-backs: BrZsOrderTablePrimitiveInsert () 54,
BrZsPrimitiveBucketSelect ()5, BrOnScreenCheck () ,5,, BrOriginToScreenXY () ,ss,
BrPointToScreenXY () ,55, BrPointToScreenXYMany () ,5,, BrOriginToScreenXYZO () ,s
BrPointToScreenXYZO () ,5;, BrPointToScreenXYZOMany () ,sg.

Related Structures

See br_primitive;,, for details of the primitive data structure. See br_model_custom_cbfn,,
for a substitute custom model rendering call-back. See br_order_table,, for details of inserting
primitives into order tables.

Specification

CBEFnPrimitive ()

Description: An application defined call-back function that is called at some point during
rendering — at precisely what point is undefined, and whether its children have
been processed is also undefined. The pass through equivalent for this call-back is
described in the example. The function may call any non-rendering functions
available to a model’s custom call-back function — see
br _model_ custom_cbfn,,.

Copyright © 1996 Argonaut Technologies Limited 3 1 5

br_primitive_cbfn

Declaration:

Arguments:

Preconditions:

Effects:

Remarks:

Example:

316

void BR_CALLBACK CBFnPrimitive (br_primitive* primitive,
br actor* actor, const br model* model, const

br material* material, br order_table* order_table, const
br scalar* z)

br primitive * primitive
Primitive to be inserted in order_table.

br_actor * actor

Pointer to model actor referencing the model from which the primitive was
generated.

const br_model * model

Pointer to the model from which the primitive was generated.

const br material * material

Pointer to actor’s material if defined, or default material otherwise.
br_order_table * order_table

Order table into which the primitive was about to be inserted.

const br_ scalar * z

Non-NULL pointer to one or more depth values of the primitive’s vertices
([-hither_z, —yon_z] in camera co-ordinate space (linearly) mapped to

[-hither_z,+yon_z]). The number of values pointer to can be determined from
the type member of primitive.

BRender has completed initialisation. Rendering is in progress (by the Z-Sort
renderer). The rendering engine has generated a primitive that faces the viewer.

Behaviour is up to the application. Any of the operations described for
br_model_custom_cbfn,,, can be used apart from
Br[zblZs]ModelRender () 555,

Any other BRender functions may be called from within this call-back with the
following restrictions:

e Don’t call any rendering functions, e.g. BrZsSceneRenderAdd () 5.

e Don’t modify any light, clip-plane or camera actors.

e Do not access output buffer until rendering has completed.

® Don’t change the environment actor.

e For best performance, avoid adding, updating or removing registry items — try
to do these things before rendering.

e Do not modify the actor hierarchy.

The following code demonstrates a primitive call-back function that performs the

equivalent of BRender’s normal primitive insertion, and so can be used for
collection of statistics, say.

void BR_CALLBACK CBFnPrimitive(br_primitive* primitive, br_actor*

actor, const br_model* model, const br_material* material,
br_order_table* order_table, const br_scalar* z)

Copyright © 1996 Argonaut Technologies Limited

br_primitive_cbfn

BrZsOrderTablePrimitiveInsert

(order_table

, primitive

, BrZsPrimitiveBucketSelect

(z

primitive->type
order_table->min_z
order_table->max_z
order_table->size

order_table->type

/* Collect statistics here */

See Also: br_primitive,,,, br_model_custom_cbfn,;, br_pick2d_cbfn,,,,
br_pick3d_cbfn,,;, BrazsOrderTablePrimitivelInsert (),
BrZsPrimitiveBucketSelect () ;.

Operations

The following functions are provided solely for appropriate use within CBFnModelCustom() s,
CBFnRenderBounds (), and CBFnPrimitive (), functions (see
br_model_custom_cbfn,,).

BrZsOrderTablePrimitivelInsert ()
BrZsPrimitiveBucketSelect();q
BrOnScreenCheck () s,
BrOriginToScreenXY () ,ss
BrPointToScreenXY () ,ss
BrPointToScreenXYMany () ,s4
BrOriginToScreenXYZO () ,s
BrPointToScreenXYZO () 5,
BrPointToScreenXYZOMany () ,sg

BrZsPrimitiveBucketSelect ()

Description: ~ Determine into which bucket a primitive would be placed given a particular sorting
method.

Copyright © 1996 Argonaut Technologies Limited 3 1 7

br_primitive_cbfn

Declaration:

Arguments:

Result:

Remarks:

br uint_16 BrZsPrimitiveBucketSelect (const br_scalar* z,
br_uint_16 pr_type, br_scalar min_z, br_scalar max_z,
br_uint_16 ot_size, br_uint_16 ot_type)

const br_ scalar * z

A non-NULL pointer to the z values corresponding to each vertex. This should point
to as many values as are indicated by the primitive type pr_type.

br_int_16 pr_type

The primitive type (see br_primitive;,,).

br_ scalar min_z, max_z

Depth range of buckets (use BrZsScreenZToDepth () 5, if wishing to work with
screen ordinates).

br_uint_16 ot_size

Number of buckets (see br_order_table,,).

br_uint_16 ot_type

How the bucket should be determined (see br_order_table,,).

br uint_16

The index of the bucket as would be passed to
BrZsOrderTablePrimitiveInsert () ;.

Although the calculation performed by this function is trivial, it is provided to allow
applications to ensure that the same bucket selection occurs in primitive call-back
functions as would occur otherwise.

318

Copyright © 1996 Argonaut Technologies Limited

br_quat

br_ quat

The Structure

The quaternion is an extension of the complex number, with the addition of two further imaginary
components. BRender restricts itself to using unit quaternions, which have the useful property of
being able to easily represent a 3D transform consisting of a rotation about an arbitrary vector.

The x, y and z components of the quaternion hold the elements of this vector scaled to a length equal
to the sine of half the angle of rotation. The w component holds the cosine of half the angle. The
magnitude of a unit quaternion is of course 1 (W?+x%+y2+z°=1).

The quaternion is written thus:

w+xi+yj+zk

NB Do not confuse the quaternion with 3D vectors or homogenous co-ordinates, i.e. br_quat,,,and
br_vector4,,, have no relationship.

The typedef
(See quat.h for precise declaration and ordering)
br_scalar w Real component

br_scalar X
br_scalar y %’ component (vector, y axis component)
br_scalar z ‘k’ component (vector, s axis component)

‘I’ component (vector, x axis component)

Related Functions

Maths

See BrEulerToQuat () 123 BrMatrix34ToQuat () ,,;,, BrMatrix4ToQuat () ,5s.

Related Structures

See br_transform,,,.

Members
br scalar w

Real component of quaternion. Represents the cosine of half the rotation about the (i,j,k) vector
component of the quaternion.

Copyright © 1996 Argonaut Technologies Limited 3 1 9

br_quat

br scalar x

First imaginary component of quaternion. Represents the x axis component of the vector about which

the rotation occurs.

br_scalar vy

Second imaginary component of quaternion. Represents the y axis component of the vector about
which the rotation occurs.

br scalar =z

Third imaginary component of quaternion. Represents the z axis component of the vector about
which the rotation occurs.

Arithmetic

BrQuatMul ()

Description:

Declaration:

Arguments:

Effects:

Result:

320

Multiply two quaternions.

br_quat* BrQuatMul (br_quat* g, const br_quat* 1,
const br_ quat* r)

br_quat * g

A pointer to the destination quaternion (may be same as either source).
const br_quat * 1

A pointer to the left hand source quaternion.

const br_quat * r

A pointer to the right hand source quaternion.

The resultant quaternion is computed as follows:

(w+xi+yj+zK)w +xi+yj+zk)=
WiW, =X X = V1Y = 2%y

+H(WX, + W, + Y2, - 2y)i

+(wy, +yw, + X, —x,2,)§

+(W1Zr + W, + xlyr_ylxr)k

br_quat *

The destination quaternion pointer is returned as supplied for convenience.

Copyright © 1996 Argonaut Technologies Limited

Remarks:

br_quat

Quaternion multiplication has the effect of concatenating the individual
transformations that each represents. It is not commutative.

BrQuatInvert ()

Description:

Declaration:

Arguments:

Effects:

Result:

Obtain the inverse of a unit quaternion. This is effectively the rotation reversed
(about the same vector component).

br_quat* BrQuatInvert (br_quat* q, const br_ quat* qq)
br_quat * g

A pointer to the destination quaternion (can be same as source).
const br _quat * qq

A pointer to the source quaternion.

The resultant quaternion is computed as follows:

(w+xi+yj+zk)_1Ew—xi—yj—zk

br_quat *

The destination quaternion pointer is returned as supplied for convenience.

BrQuatSlerp ()

Description:

Declaration:

Arguments:

Effects:

The ‘Slerp’ operation (spherical, linear interpolation) interpolates linearly between
two quaternions along the most direct path between the two orientations.

br_quat* BrQuatSlerp(br_quat* q, const br_quat* 1,
const br_quat* r, br_scalar t, br_int_16 spins)

br_quat * g
A pointer to the destination quaternion (can be same as either source).
const br quat * 1

A pointer to the starting quaternion (equivalent to result with t=0).

const br quat * 1

A pointer to the finishing quaternion (equivalent to result with t=1).

br scalar t

Interpolation parameter in the range [0,1].

br int 16

Number of extra spins in the interpolated path.

A special value of zero causes interpolation along the shortest path.

A special value of -1 causes interpolation along the longest path.

Computes the quaternion between 1 and r corresponding to position t along the

Copyright © 1996 Argonaut Technologies Limited 3 2 1

br_quat

interpolated path between them.
Result: br_quat *

The destination quaternion pointer is returned as supplied for convenience.

Conversion

From Eulers and Matrices
See BrEulerToQuat () ,;, BrMatrix34ToQuat () ,,;, BrMatrix4ToQuat () ,,s.

To Eulers and Matrices

See BrQuatToEuler () ,;, BrQuatToMatrix34 () ,,;, and BrQuatToMatrix4 () ,,, as described
below.

Also see BrTransformToTransform () ;.

BrQuatToEuler ()

Description: ~ Convert a unit quaternion to an Euler angle set, that would have the same
transformational effect.

Declaration: br_euler* BrQuatToEuler (br_euler* euler, const br quat* q)
Arguments: br_euler * euler
A pointer to the destination Euler angle set to receive the conversion.
const br_quat * g
A pointer to the source unit quaternion.
Result: br_euler *

Returns euler for convenience.

BrQuatToMatrix34 ()

Description: ~ Convert a unit quaternion to a 3D affine matrix, that would have the same
transformational effect.

Declaration: br matrix34* BrQuatToMatrix34 (br_matrix34* mat,
const br_ quat* q)

3 2 2 Copyright © 1996 Argonaut Technologies Limited

br_quat

Arguments: br_matrix34 * mat
A pointer to the destination matrix to receive the conversion.
const br_quat * g
A pointer to the source unit quaternion.
Result: br_matrix34 *
Returns mat for convenience.

Remarks: The resulting matrix at mat is equivalent to the following:

1-4("+2) 4(xy+wz) 4(xz—wy) 0

w+xi+yj+zk= dxy-wz) 1-4(7+72°) 4(yz+wx) 0

4(xz+wy) 4(yz—wx) 1—4(x2+y2) 0
0 0 0 1

BrQuatToMatrix4 ()

Description: ~ Convert a unit quaternion to a 3D affine matrix, that would have the same
transformational effect.

Declaration: br_matrix4* BrQuatToMatrix4 (br_matrix4* mat,
const br_quat* q)

Arguments: br_matrix4 * mat
A pointer to the destination matrix to receive the conversion.
const br_quat * g
A pointer to the source unit quaternion.
Result: br_matrix4 *
Returns mat for convenience.
See Also: BrQuatToMatrix34 () ;.

Copy/Assign

Use structure assignment to cOpy quaternions.

Access & Maintenance

Members may be freely accessed. Maintenance is only required for unit quaternions that have been
modified.

Copyright © 1996 Argonaut Technologies Limited 3 2 3

br_quat

BrQuatNormalise ()

Description: ~ Normalise a quaternion.
Declaration: br_quat* BrQuatNormalise (br_quat* g, const br_quat* qq)
Arguments: br_quat * g
A pointer to the destination quaternion (may be same as source).
const br_quat * qq
A pointer to the source quaternion.
Effects: The destination is each element of the source divided by its magnitude.

Remarks: BRender assumes that only unit quaternions are used, and due to this assumption
being embodied in certain calculations, if non-unit quaternions are used it is likely
that unwanted side effects such as scaling will be introduced. This function ensures
that the quaternion is a unit one, and is intended to be applied to unit quaternions
that have resulted from a large number of intermediate calculations and may have
drifted (due to precision limitations) from unit magnitude.

Initialisation

The following macro may be used as a static initialiser. Note the order in which the components are
specified.
BR_QUAT (x,y, 2z, W)

Macro expands to
{BR_SCALAR (x) , BR_SCALAR (y) , BR_SCALAR (z) , BR_SCALAR (W) }.

All other initialisation should be member-wise or by using structure assignment.

3 2 4 Copyright © 1996 Argonaut Technologies Limited

br_renderbounds_cbfn

br renderbounds cbfn

The Call-Back Function

This type defines a call-back function, which can be specified by using the function
Br[ZblZs]RenderBoundsCallbackSet () 5. It is called for each rendered model actor in the actor
hierarchies supplied to Br[ZblZs]SceneRender () ,,;, and Br[ZblZs]SceneRenderAdd (), (it
may also be called by Br[ZblZs]ModelRender () ,s;,54)- It enables an application to perform extra
rendering for particular actors, or to perform computations that require information only obtainable
just after a model actor has been processed by the rendering engine.

The typedef

(See zbproto.h for a precise declaration)

void br_renderbounds_cbfn (br_actor*, const br _model*, const br _material*, void¥,
br uint_8, const br_matrix4*, const br_ int_32 [4]) Render
bounds call-back

Related Functions

For details of how to specify that a render bounds call-back function should be called during
rendering see Br[ZblZs]RenderBoundsCallbackSet () y0-

Functions dedicated for use within rendering call-backs: Br[ZblZs]ModelRender () ,s3ps4
BrOnScreenCheck () ,5,, BrOriginToScreenXY () ,55, BrPointToScreenXY () ,ss,
BrPointToScreenXYMany () ,55, BrOriginToScreenXYZO () ,5, BrPointToScreenXYZO () ,s7,
BrPointToScreenXYZOMany () ,s;-

Related Structures

See br_model_custom_cb£n,,, for a substitute model rendering call-back.

Specification

CBFnRenderBounds ()

Description: ~ An application defined call-back function that is called for each rendered model, at
some point during rendering — at precisely what point is undefined, except that its
parents have been processed (though not necessarily rendered). The pass through
equivalent for this call-back is to do nothing. The function may call any non-
rendering functions available to a model’s custom call-back function — see
br _model_ custom_cbfn,,.

Copyright © 1996 Argonaut Technologies Limited 3 2 5

br_renderbounds_cbfn

Declaration:

Arguments:

Preconditions:

Effects:

Remarks:

326

void BR_CALLBACK CBFnRenderBounds (br_actor* actor,
const br_model* model, const br material* material,
void* render_data, br_uint_8 style,

const br _matrix4* model_to_screen,

const br_int_ 32 bounds[4])

br_actor * actor

Pointer to model actor referencing the model.

const br_model * model

Pointer to a model that has affected the rendering.

const br material * material

Pointer to actor’s material if defined, or default material otherwise.

void * render_ data

If the function is called during a rendering performed by the Z-Sort renderer this

will point to the order table into which the model actor’s primitives have been
inserted.

br_uint_8 style

Actor’s rendering style, or default. BRender will not supply
BR_RSTYLE_BOUNDING_- or BR_RSTYLE_NONE.

const br_matrix4 * model_to_screen

A pointer to a matrix giving the model to screen transformation.

const br_int_32 bounds[4]

An array containing minimum and maximum screen ordinates of pixels that would

be modified in the process of rendering the model. Use the following symbols to
obtain each ordinate:

Index Symbol Ordinate Obtained

BR_BOUNDS_MIN_X [Left-most column in which pixels are modified

BR_BOUNDS_MAX_X | Right-most column in which pixels are modified

BR_BOUNDS_MIN_Y | Top-most row in which pixels are modified

BR_BOUNDS_MAX_Y | Bottom-most row in which pixels are modified

BRender has completed initialisation. Rendering is in progress. The rendering
engine has determined that the model will affect pixels in the output buffers.

Behaviour is up to the application. Any of the operations described for
br_model_custom_cbfn,, can be used except
Br[zblZs]ModelRender () 55354

"This function may also be called as a result of calling
Br[ZblZs]ModelRender () ,s;,s,, SO if you are highlighting a model’s edges say, be
careful that you don’t accidentally over recurse.

Copyright © 1996 Argonaut Technologies Limited

Example:

br_renderbounds_cbfn

Any other BRender functions may be called from within this call-back with the
following restrictions:

e Don’t call any rendering functions.

e Don’t modify any light, clip-plane or camera actors.

® Do not access output buffers until rendering has completed.
e Don’t change the environment actor.

e For best performance, avoid adding, updating or removing registry items — try
to do these things before rendering.

¢ Do not modify the actor hierarchy.

Possible uses include:

e Dirty Rectangle Tracking (tracking modified areas of the screen pixel map).
e Monitoring the set of model actors currently on screen

e Labelling, selection, highlighting

e (ollision detection (not necessarily indicating the best method)

Note that a suitable call to clear the area of a pixel map for the purpose of clearing
dirty rectangles only, is as follows:

BrPixelmapDirtyRectangleFill

(

’

’

See Also:

pixel_map

BR_BOUNDS_MIN_X
BR_BOUNDS_MIN_Y
BR_BOUNDS_MAX_X
BR_BOUNDS_MAX_Y

bounds
bounds
bounds —bounds [BR_BOUNDS_MIN_X]+1L

[
[
[
[—bounds [BR_BOUNDS_MIN_Y]+1L

]

]

]
bounds]
0

br_model_custom_cbfn,;,br_primitive_cbfn;,,
br_pick2d_cbfn,,,, br_pick3d_cbfn,,..

Operations

The following functions are provided solely for use within CBFnModelCustom() s,
CBFnPrimitive (),, and CBFnRenderBounds (), functions (see
br_model_custom_cbfn,,).

BrOnScreenCheck () 55,
BrOriginToScreenXY (),
BrPointToScreenXY () s
BrPointToScreenXYMany () ,s4
BrOriginToScreenXYZO () ,5
BrPointToScreenXYZO () 5,

Copyright © 1996 Argonaut Technologies Limited 3 2 7

br_renderbounds_cbfn

BrPointToScreenXYZOMany () »s

3 2 8 Copyright © 1996 Argonaut Technologies Limited

br_resclass_enum_cbfn

br resclass enum cbfn

The Call-Back Function

This type defines a function, supplied to BrResClassEnum () 5, and to be called by it for a selection

of resource classes.

(See fwproto.h fora precise declaration)

The typedef

br_uint_32

br_resclass_enum_cbfn (br_resource_class *,void *)Enumerator

Specification

CBFnResClassEnum/()

Description:

Declaration:

Arguments:

Preconditions:
Effects:

Result:

See Also:

An application defined call-back function accepting a resource class and an
application supplied argument (as supplied to BrResClassEnum () ;).

br_uint_32 BR_CALLBACK
CBFnResClassEnum (br_resource_class* item, void* arg)

br resource class * item

One of the resource classes selected by BrResClassEnum () 5.
void * arg

The argument supplied to BrResClassEnum () ;4.

BRender has completed initialisation.

Application defined. Avoid adding or removing resource classes within this
function.

br uint_32
Any non-zero value will terminate the enumeration and be returned by
BrResClassEnum () 5, Return zero to continue the enumeration.

BrResClassEnum () 5, BrResChildEnum () .

Copyright © 1996 Argonaut Technologies Limited 3 2 9

br_resclass_find_cbfn

br resclass find cbfn

The Call-Back Function

This type defines a function, registered with BrResClassFindHook () 55, to be called when
BrResClassFind () ;;; or BrResClassFindMany (), fail to find any resource class.

(See fwproto.h for a precise declaration)

The typedef

br_resource_class * br_resclass_find_cbfn(const char *)Find(whenBrResClassFind ()
fails)

Specification

CBFnResClassFind()

Description:

Declaration:

Arguments:

Preconditions:

Effects:
Result:

Remarks:

See Also:

An application defined call-back function used when BrResClassFind () 35 Or
BrResClassFindMany () ;3 fail.

br resource class* BR CALLBACK
CBFnResClassFind (const char* name)

const char * name

The search pattern supplied to BrResClassFind () 55 Or
BrResClassFindMany () ;35 that did not match any resource class.

BRender has completed initialisation. No resource class has an identifier that
successfully matches the search pattern.

Application defined.

br_ resource_class *

Either return an existing resource class that is deemed appropriate for the search
pattern, or NULL if there isn’t one. This value will be returned by
BrResClassFind () ;3 or BrResClassFindMany () ;3.

"This could either be used to supply a default resource or to create a resource class.
If some resource classes were created on demand, then this function could search
another list of available resource classes (but not yet created) and see if the pattern
matched any of them, if it did, one of them could be registered and returned.Note
that there is no way to supply more than one resource class.

BrResClassFind () 535, BrResClassFindMany () s34,
BrResClassFindHook () ;3.

330

Copyright © 1996 Argonaut Technologies Limited

br_resenum_cbfn

br resenum cbfn

The Call-Back Function

This type defines a function, supplied to BrResChildEnum () s, and to be called by it for each child
resource block attached to a specific resource block.

(See fwproto.h for a precise declaration)

The typedef

br_uint_32 br_resenum_cbfn (void *,void *)Enumerator

Specification

CBFnResEnum ()

Description: An application defined call-back function accepting a resource block and an
application supplied argument (as supplied to BrResChildEnum ()).

Declaration: br_uint_32 BR_CALLBACK CBFnResEnum(void* vres, void* argqg)

Arguments: void * vres

One of the resource blocks attached as a child of the resource block supplied to
BrResChildEnum/() y,.

void * arg
The argument as supplied to BrResChildEnum () s,
Preconditions: ~ BRender has completed initialisation.
Effects: Application defined.
If blocks are attached to the parent during the enumeration, they may not be

included in the enumeration. Only the current, supplied child resource block
should be detached or freed (if desired).

Result: br_uint_32

Any non-zero value will terminate the enumeration and be returned by
BrResChildEnum () 5. Return zero to continue the enumeration.

See Also: BrResChildEnum (), BrResClassEnum () .

Copyright © 1996 Argonaut Technologies Limited 3 3 1

br_resource_class

br resource class

The Structure
This structure is used for application defined resource classes.

Once the structure is initialised, it is registered using BrResClassAdd () ;;5, thereafter allowing
application defined memory or resource classes to be used.

The typedef

(See brmem.h for precise declaration and ordering)

Primary

br_uint_8 res_class Resource memory class
br_ resourcefree_cbfn* free_cb Resource destructor
Supplementary

char * identifier Resource class name
Related Functions

Resource Management

See BrResAllocate () 43 BrResFree () 5;, BrResAdd () ,, BrResRemove () 5;, BrResStrDup () ,,
BrResSize ()5, BrResClass () 4, BrResChildEnum () 5.

Memory Management

See BrMemAllocate () ss» BrMemCalloc () 55, BrMemInquire () 55, BrMemFree () 5,
BrMemStrDup () .

Related Structures

Memory Management

See br_allocator,,.

3 3 2 Copyright © 1996 Argonaut Technologies Limited

br_resource_class

Members
Primanry

br uint 8 res_class

The memory class of the new resource class. See Memory Classes for a description of possible values.
Only values between BR_MEMORY_APPLICATION+1 and BR_MEMORY_MAX—1 (inclusive) should be
used.

br resourcefree cbfn * free_ cb

This is a pointer to the destructor function (See br_resourcefree_cbfn,,,) it may be NULL if not
required. Note that this function is not used to free the memory of the resource. It is simply an
opportunity for the application to perform any other housekeeping functions indicated by the
destruction of the resource. The resource is destroyed after the destructor returns.

For example, a user defined resource may be of structures containing pointers to reference counted
(non-resource) items. In such a case, the referenced item will need to be dereferenced.

Supplementary

char * identifier

Pointer to unique, zero terminated, character string (or NULL if not required). A string constant is
recommended. The alternative is to use something like:
my_res_class=BrResAllocate (NULL, sizeof (br_resource_class),
BR_MEMORY_RESOURCE_CLASS) ;
my_res_class—->identifier=BrResStrDup (my_res_class, "MyClass”);

Operations

BrResClassAdd()

Description: ~ Create a new resource class.
Declaration: br_resource_class* BrResClassAdd (br_resource_class* rclass)
Arguments: br resource class * rclass

A non-NULL pointer to a resource class. The res_class memberof rclass
must be set to a valid, unused class ID between BR_MEMORY_APPLICATION+1 and
BR_MEMORY_MAX—1 (inclusive).

Preconditions: Between BrBegin () ;, & BrEnd() ;.

Copyright © 1996 Argonaut Technologies Limited 3 3 3

br_resource_class

Result:

Remarks:

br resource class *

Returns a pointer to the resource class or NULL if unsuccessful.

Remember, that rclass must point to a resource class structure that will remain
valid until the class is removed.

BrResClassAddMany ()

Description:

Declaration:

Arguments:

Preconditions:

Result:

Remarks:

Create several new resource classes.

br uint_32
BrResClassAddMany (br_resource_class* const* items, int n)

br_ resource_class * const * items

A non-NULL pointer to a series of pointers to resource classes. The res_class
member of each resource class structure pointed to by items must be set to a
valid, unused class ID between BR_MEMORY_APPLICATION+1 and
BR_MEMORY_MAX—1 (inclusive).

int n

Number of new resource classes to create.

Between BrBegin (), & BrEnd () .

br uint_32

Returns the number of resource classes successfully created.

Remember, that each resource class structures must remain valid until it is
removed.

BrResClassRemove ()

Description:

Declaration:

Arguments:

Preconditions:

Result:

Remove a resource class from use.

br_ resource_class*
BrResClassRemove (br_resource_class* rclass)

br resource class * rclass

A non-NULL pointer to a resource class (that has been previously created using
BrResClassAdd () ;;s).

Between BrBegin () ,, & BrEnd() ;.
br_ resource_class *

Returns a pointer to the removed resource class.

BrResClassRemoveMany ()

Description:

334

Remove a number of resource classes from use.

Copyright © 1996 Argonaut Technologies Limited

br_resource_class

Declaration: br_uint_32
BrResClassRemoveMany (br_resource_class* const* items, int n)

Arguments: br resource class * const * items

A non-NULL pointer to an array of pointers to resource classes (all having
previously been created using BrResClassAdd () 535).

int n
Number of resource classes to remove from use.
Preconditions: Between BrBegin () ,, & BrEnd () ;.
Result: br_uint_ 32

Returns the number of resource classes successfully removed from use.

Copy/Assign

Beware of copying the structure if identifier has been allocated from the heap. Do not use the
same structure for different resource classes.

Access & Maintenance

While a current resource class, the members should not be changed. No maintenance required.

Referencing & Lifetime

The structure must remain valid until the class is removed using BrResClassRemove () ;3. BRender
will not necessarily make a copy of the br_resource_class,,, structure.

Initialisation

The members should be set before the structure is passed to BrResClassAdd () ;3.

Construction & Destruction

The structure should ideally be statically constructed, but could be constructed and destroyed as in
the following code:
br_resource_class* my_res_class;
my_res_class=BrResAllocate (NULL, sizeof (br_resource_class),
BR_MEMORY_RESOURCE_CLASS) ;
.../* Set members */
#define MY_RES_CLASS BR_MEMORY_APPLICATION+1
my_res_class->res_class=MY_RES_CLASS;
my_res_class->free_cb=NULL;
my_res_class—->identifier="MyResClass”;

BrResClassAdd (my_res_class);

Copyright © 1996 Argonaut Technologies Limited 3 3 5

br_resource_class

BrResFree (my_res_class);

Supplementary

The identifier may be used to specify a resource class by name. Not recommended for intensive
use. Locate resources, and keep a record of pointers. The following functions provide searching,
counting and enumeration facilities for resource classes.

BrResClassFind|()

Description:

Declaration:

Arguments:

Result:

Find a resource class in the registry by name. A call-back function can be set up to
be called if the search is unsuccessful. The search pattern can include the standard
wild cards “*’ and 7.

br_resource_class* BrResClassFind(const char* pattern)
const char * pattern

Search pattern.

br resource class *

Returns a pointer to the resource class if found, otherwise NULL. If a call-back
exists and is called, the call-back’s return value is returned.

BrResClassFindMany ()

Description:

Declaration:

Arguments:

Result:

336

Find a number of resource classes in the registry by name. The search pattern can
include the standard wild cards “*’ and ?".

br_uint_32 BrResClassFindMany (const char* pattern,
br resource_class** items, int max)

const char * pattern

Search pattern.

br_resource_class ** items

A pointer to an array of pointers to resource classes.
int max

The maximum number of resource classes to find.
br uint_32

Returns the number of resource classes found. The pointer array is filled with
pointers to the resource classes.

Copyright © 1996 Argonaut Technologies Limited

br_resource_class

BrResClassFindHook ()

Description: ~ Setup aresource class find call-back. [f BrResClassFind () 34 is unsuccessful and
a call-back has been set up, the call-back is passed the search pattern as its only
argument. The call-back should then return a pointer to a substitute or default
resource class.

Declaration: br_resclass_find_cbfn*
BrResClassFindHook (br_resclass_find cbfn* hook)

Arguments: br resclass_find cbfn * hook

A pointer to a call-back function.
Result: br_resclass_find cbfn *
Returns a pointer to the old call-back function.
Example:
br_resource_class BR_CALLBACK * example_callback (char* pattern)

{ Dbr_resource_class default;
return (&default) ;
{ br_resource_class *rc;

BrResClassFindHook (&example_callback);

rc = BrResClassFind (“non_existant_class”);

BrResClassCount ()

Declaration: br_uint_32 BrResClassCount (const char* pattern)

Description: ~ Count the number of resource classes in the registry whose names match a given
search pattern. The search pattern can include the standard wild cards “*’ and ‘?’.

Arguments: const char * pattern
Search pattern.
Result: br_uint_32

Returns the number of resource classes matching the search string.

Copyright © 1996 Argonaut Technologies Limited 3 3 7

br_resource_class

BrResClassEnum/()

Description:

Declaration:

Arguments:

Result:

Example:
br_uint_32 BR_CALLBACK example_callback (br_resource_class* item,

Call a call-back function for every resource class matching a given search pattern.
The call-back is passed a pointer to each matching resource class, and its second
argument is an optional pointer supplied by the user. The search pattern can
include the standard wild cards “*’ and ‘?’. The call-back itself returns a
br_uint_32,, value. The enumeration will halt at any stage if the return value
is non-zero.

br_uint_32 BrResClassEnum(char* pattern,
br_resclass_enum_cbfn* callback, void* arg)

char * pattern

Search pattern.

br resclass_enum cbfn * callback

A pointer to a call-back function.

void * arg

An optional argument to pass to the call-back function.
br uint_32

Returns the first non-zero call-back return value, of zero if all resource classes are
enumerated.

void* arg)
br_uint_32 value;
return (value) ;
br_uint_32 ev;

ev = BrResClassEnum(“pattern”, &example_callback,NULL) ;

338

Copyright © 1996 Argonaut Technologies Limited

br_resourcefree_cbfn

br resourcefree cbfn

The Call-Back Function

This type defines a ‘destructor’ function, optionally specified in the resource class descriptor
br_resource_class;,,, that is called just before a resource block is freed.

(See fwproto.h for a precise declaration)

The typedef

void br_resourcefree_cbfn(void*,br_uint8,br_size_t) Destructor

Specification

CBFnResourceFree ()

Description: An application defined call-back function accepting details of a resource block just
before it will be freed.

Declaration: void BR_CALLBACK CBFnResourceFree (void* res,
br_uint_8 res_class, br_size_t size)

Arguments: void * res

The resource block about to be freed.
br uint_8 res_class
The memory class of the resource block’s resource class.
br size t size
The size of the resource block (useful for arrays).

Preconditions: ~ BRender has completed initialisation.

Effects: Application defined.

Do not free the block — this will be performed after the function returns. This

function will also be subsequently called for any child resource blocks still
attached.

See Also: BrResFree ().

Copyright © 1996 Argonaut Technologies Limited 3 3 9

br_scalar

br scalar

The Integral Type

The br_scalar,,, type is the general numerical representation used by BRender. Under the fixed
point library, br_scalar,,, is a 32 bit fixed point number (sign + 15 bit integer + 16 bit fraction), and
can represent numbers between approximately -32768 and +32768. Under the floating point library,
br_scalar,,isa float, and can represent numbers between approximately -3.4e38 and +3.4¢38.

Use br_scalar,,, instead of int, float or double, in all numerical modelling aspects of an application
program.

The typedef

(See scalar.h for precise declaration)

float br_scalar Floating point

br_fixed 1ls br_scalar Fixed — Long Signed(15.16)
Arithmetic

No standard arithmetic operators are supported. The following macros should be used instead. All
arguments and return values are of type br_scalar,,, (except where otherwise stated).

Macros for Standard Operations
BR_ADD (a,b)

Return the equivalentof a + b .
BR_SUB(a,b)
Return the equivalentof a - b .

BR_CONST_MUL (a, x)

Return the equivalent of a * (where x is a numeric constant).

b

BR_MUL (a, b)

Return the equivalentof a * b .
BR_SQOR (a)

Return the equivalentof a * a .
BR_RCP (a)

Return the equivalentof 1.0 / a .
BR_CONST_DIV(a,x)

Return the equivalentof a / x (where x isa numeric constant).
BR_DIV (a,b)

Return the equivalentof a / b.

3 40 Copyright © 1996 Argonaut Technologies Limited

br_scalar

BR_DIVR (a,b)

Return the equivalentof a / b (rounding toward zero instead of negative
infinity*).
BR_MULDIV(a,b,c)

Return the equivalentof a * b / ¢ .

Macros for Standard Functions
BR_ABS (a)

Return the equivalent of fabs(a)
BR_POW(a,b)

Return the equivalent of pow(a , b)
BR_SQRT (a)

Return the equivalent of sqrt(a)

Macros for Vector and Matrix Oriented Arithmetic

For Two Pairs of Operands
BR_SQR2 (a,b)

Return the equivalentof a * a + b * b .
BR_LENGTH2 (a, b)

Return the equivalentof sqrt(a * a + b * b)
BR_RLENGTH2 (a,b)

Return the equivalentof (1.0 / sgrt(a * a + b * b))
BR_MAC2 (a,b,c,d)

Return the equivalentof a * b + ¢ * d .
BR_MAC2DIV(a,b,c,d,e)

Return the equivalentof (a * b + ¢ * d) / e .

For Three Pairs of Operands
BR_SQR3(a,b,c)

Return the equivalentof a * a + b * b + ¢ * ¢ .
BR_LENGTH3 (a, b, c)

Return the equivalentof sqrt(a * a + b * b + ¢ * ¢)
BR_RLENGTH3 (a, b, c)

Return the equivalentof (1.0 / sqgrt(a * a + b * b + ¢ * ¢))

* Sometimes this difference between BR_DIV () and BR_DIVR () can be important when dealing with fixed
point values.

Copyright © 1996 Argonaut Technologies Limited 3 4 1

br_scalar

BR_MAC3(a,b,c,d, e, f)

+
Q
*
[oN
+
)
>*
Hh

Return the equivalentof a * b
BR_MAC3DIV(a,b,c,d, e, £f,q)

Return the equivalentof (a * b + ¢ *d + e * £) / g .

For Four Pairs of Operands
BR_SQR4 (a,b,c,d)

Return the equivalentof a * a + b * b + ¢ * ¢ + d * d .

BR_LENGTH4 (a,b, c, d)

Return the equivalentof sqrt(a * a + b * b + ¢ * ¢ + d * d)

BR_RLENGTH4 (a,b, c,d)

Return the equivalentof (1.0 / sqgqrt(a * a + b * b + ¢ * ¢ + d
*d))
BR_MAC4 (a,b,c,d,e, f,g,h)

Return the equivalentof a * b + ¢ * d + e * £ + g * h .

BR_MAC4DIV(a,b,c,d,e,f,g,h,1i)

Return the equivalentof (a * b + ¢ *d + e * £ + g * h) / 1.

Comparison

Equality and comparison with zero are valid. Other standard comparison operators may be
implemented by macros in future versions, but are currently valid.

Conversion

From Numeric Constants
BR_SCALAR (x)

Convert x from any numeric constant to scalar type. Also see BR_CONST_MUL ()
and BR_CONST_DIV ().

BR_SCALAR_EPSILON

Smallest representable positive scalar value.
BR_SCALAR_MIN

Largest representable negative scalar value.
BR_SCALAR_MAX

Largest representable positive scalar value.

3 4 2 Copyright © 1996 Argonaut Technologies Limited

br_scalar

From Integral Types

br scalar BrIntToScalar(int i)

Converts 1 from any integer type to scalar type.

br_scalar BrFloatToScalar (int i)

Converts 1 from float ordouble type to scalar type.

From Other BRender Types

br_scalar BrAngleToScalar (br_angle a)

Converts a from angle type to scalar type.

br scalar BrFixedToScalar (br_ fixed_1ls f)

Converts £ from fixed type to scalar type.

br scalar BrFractionToScalar (br_fraction f)

Converts £ from fraction type to scalar type.

br_scalar BrUFractionToScalar (br_ufraction u)

Converts u from unsigned fraction type to scalar type.

To Integral Types

int BrScalarTolInt (br_scalar s)

Converts s from scalar type to int.
float BrScalarToFloat (br_scalar s)

Converts s from scalar type to float.

To Other BRender Types

br_angle BrScalarToAngle (br_scalar s)

Converts a from scalar type to angle type.

br fixed l1ls BrScalarToFixed (br_scalar s)

Converts s from scalar type to fixed type.

br fraction BrScalarToFraction (br_scalar s)

Converts £ from scalar type to fraction type.

br ufraction BrScalarToUFraction (br_scalar s)

Converts u from scalar type to unsigned fraction type.

Copy/Assign

Only assign zero, or scalars. Use conversions in all other cases.

Copyright © 1996 Argonaut Technologies Limited 3 4 3

br_size_t

br size t

The Integral Type

BRender’s size type — in case the target environment does not define a size_t type. Use this type
to represent sizes, as returned by the sizeof () operator.

The typedef

(See compiler.h for precise declaration)

unsigned int br_size t Generic sise type
Arithmetic

All standard C arithmetic operators are valid (though not necessarily sensible) as with standard
integer types.

Comparison

All standard C comparison operators are valid as with standard integer types.

Conversion

Use casts as with any other standard C type.

Copy/Assign

Use as is the convention with the size_t type.

3 4 4 Copyright © 1996 Argonaut Technologies Limited

br_table_enum cbfn

br table enum cbfn

The Call-Back Function

This type defines a function, supplied to BrTableEnum () ,;, and to be called by it for a selection of
tables.

The typedef

(See fwproto.h fora precise declaration)

br_uint_32 br_table_enum_cbfn (br_pixelmap*, void*)Enumerator
Specification

CBFnTableEnum/()

Description: ~ An application defined call-back function accepting a table and an application
supplied argument (as supplied to BrTableEnum () ,y,).

Declaration: br_uint_32 BR_CALLBACK CBFnTableEnum(br_pixelmap* table,
void* arg)
Arguments: br_pixelmap * table
One of the tables selected by BrTableEnum () ,,;.
void * arg
The argument supplied to BrTableEnum () 5.
Preconditions: ~ BRender has completed initialisation.
Effects: Application defined. Avoid adding or removing tables within this function.
Result: br_uint_32
Any non-zero value will terminate the enumeration and be returned by
BrTableEnum (), Return zero to continue the enumeration.
See Also: BrTableEnum () ,;, BrTableFind () 5.

Copyright © 1996 Argonaut Technologies Limited 3 4 5

br_table_ find_cbfn

br table find cbfn

The Call-Back Function

This type defines a function, registered with BrTableFindHook () 5y, to be called when
BrTableFind (), or BrTableFindMany () ,, fail to find any table.

The typedef

(See fwproto.h fora precise declaration)

br_pixelmap*

br_table_find_cbfn(const char*) Find (whenBrTableFind () fails)

Specification

CBFnTableFind ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:
Result:

Remarks:

See Also:

An application defined call-back function used when BrTableFind (), OF
BrTableFindMany () , fail.

br_pixelmap* BR_CALLBACK CBFnTableFind (const char* name)
const char * name

The search pattern supplied to BrTableFind (), or BrTableFindMany ()
that did not match any table.

BRender has completed initialisation. No table has an identifier that successfully
matches the search pattern.

Application defined.
br_pixelmap *

Either return an existing table that is deemed appropriate for the search pattern, or
NULL if there isn’t one. This value will be returned by BrTableFind () 5 OF
BrTableFindMany () ;-

"This could either be used to supply a default table or to create a table. If tables were
created on demand, then this function could search another list of available tables
(but not yet created) and see if the pattern matched any of them, if it did, one of
them could be registered and returned. Note that there is no way to supply more
than one table.

BrTableFind () ,y, BrTableFindMany () ,4, BrTableFindHook () ,g,
BrTableFindFailedLoad () 5.

346

Copyright © 1996 Argonaut Technologies Limited

br_transform

br transform

The Structure

This is BRender’s generic transformation type, primarily used to specify a transformation from one
actor’s space to another’s. In an actor it represents the transform to be applied to co-ordinates (such
as of a model) in its space to bring them into the co-ordinate space of its parent.

The typedef

(See transform.h for precise declaration and ordering)

Transform Type

br_uint_16 type Specifies how the transformation is represented.

Translation Transform
br_vector3 t.translate.t Translation for the Translation transform type

Euler Transform

br_vector3 t.euler.t Translation for the Euler transform type

br_euler t.euler.e Euler angle set of the Euler transform type

Look Up Transform

br_vector3 t.look_up.t Translation for the Look Up transform type

br_vector3 t.look_up.look Look-at vector for the Look Up transform type

br_vector3 t.look_up.up Look-up vector for the Look Up transform type

Quaternion Transform

br_vector3 t.quat.t Translation for the Quaternion transform type

br_quat t.quat.q Quaternion rotation for the Quaternion transform
type

Matrix Transform

br_matrix34 t.mat Matrix34 for both Matrix transform types

Related Functions

Scene Modelling

See BrActorToActorMatrix34 () 34 and BrActorToScreenMatrix4 () g5°
Related Structures

Scene Modelling

See br_actor,.

Copyright © 1996 Argonaut Technologies Limited 3 4 7

br_transform

Members
Transform Type

br_uint_16 type

This member defines which other members of the transform structure have meaning. It should never
be modified directly except for initialisation purposes. Refer to BrTransformToTransform () ,s, for
details of how to convert from one transform to another.

This member may have any one of the following values:

Value Symbol Meaning

BR_TRANSFORM_IDENTITY The transform is the identity.

BR_TRANSFORM_TRANSLATION [The transform is a translation only (held in t . translate.t).

BR_TRANSFORM_EULER The transform is represented by a Euler angle set (t .euler.e)and
a translation (t . euler.t).

BR_TRANSFORM_LOOK_UP The transform is represented by a look-at vector

(t.look_up.look),an up vector (t . look_up.up)anda
translation (t . look_up.t).

BR_TRANSFORM_QUAT The transform is represented by a quaternion (t . quat.q)and a
translation (t . quat.t).
BR_TRANSFORM_MATRIX34 The transform is represented by a 3x4 affine matrix (t . mat), which

is the most general representation.

BR_TRANSFORM_MATRIX34_LP [The transform is represented by a 3x4 length preserving matrix
(t.mat).

Identity Transform

The identity transform is engaged when type is set to BR_TRANSFORM_IDENTITY. This is effectively
a NULL transform, making actors effectively share the same co-ordinate space as their parent.

Translation Transform

The translation transform is engaged when type is set to BR_TRANSFORM_TRANSLATION. This is
solely a translation, i.e. no rotation or scaling is involved.

br vector3 t.translate.t

This member only has meaning for this transform type’. It contains the vector representing the
translation.

* However, upon inspection of br_transform itcan be seen that it is effective for all transforms apart from

the identity. Use of this feature is for internal use only.

3 4 8 Copyright © 1996 Argonaut Technologies Limited

br_transform

Euler Transform

The Euler transform is engaged when type is set to BR_TRANSFORM_EULER. This consists of a three
rotations about a combination of orthogonal axes and a translation (effectively applied after the
rotations). See br_euler,,, for more information.

br vector3 t.euler.t

This member contains the vector representing the translation component of the transform.

br vector3 t.euler.e

This member contains the vector representing the rotation components of the transform.

Look Up Transform”

The Look Up transform effectively consists of a pair of rotations and a translation. The first rotation
is defined about the origin between the negative z axis and the 1ook vector. The second rotation is
defined about the new z axis between the new positive x axis and the cross product of the up and
look vectors. The translation is then applied.

The Look Up transform is a convenient method of making an actor such as a camera point toward a
particular position. It has the effect of making the actor’s negative’ z axis lie along the 1ook vector,
and its positive y axis lie in the plane defined by the up and 1ook vectors (or more precisely, its
positive x axis will lie along the cross product of the up and 1ook vectors). Remember that the 1ook
and up vectors will be in the co-ordinate space of the actor’s parent and thus from its point of view,
so if pointing at a particular actor, in order to compute look, that actor’s co-ordinates will also need
to be transformed into the co-ordinate space of the parent (seec BrActorToActorMatrix34()g,).
Incidentally, things can be simplified by using intermediate dummy actors (BR_ACTOR_NONE).

The translation is applied at the end.

br_vector3 t.look_up.t

This member contains the vector representing the translation component of the transform.

br_vector3 t.look_up.look

This member contains the vector that defines the rotation of the negative z axis.

br_vector3 t.look_up.up

This member contains the vector that defines the rotation about the look vector.

* Not represented by a separate BRender structure.
+ Negative rather than positive in order to be consistent with the camera definition (which is the predominant
actor expected to utilise the Look Up transform).

Copyright © 1996 Argonaut Technologies Limited 3 4 9

br_transform

Quaternion Transform

The unit quaternion transform represents a rotation about an arbitrary vector.

br_vector3 t.quat.t

This member contains the vector representing the translation component of the transform.

br_vector3 t.quat.qg

This member contains the vector representing the rotation component of the transform.

Matrix Transforms

Matrix transforms represent BRender’s most general form of transformation. See br_matrix34,,,
for details of how matrix transformations are performed.

BR_TRANSFORM_MATRIX34_LP isa slightly more specialised form which requires that the matrix have
no scaling effect, i.e. is length preserving.

br matrix34 t.mat

This member contains the 3D affine matrix representing the entire transform.

Arithmetic

See BrMatrix34PreTransform(),,, BrMatrix34PostTransform () ,y, and
BrMatrix4PreTransform() ,,;.

Conversion

Also see BrMatrix34ToEuler () ,;, BrMatrix34ToQuat () ,,;, BrEulerToMatrix34 () ,; and
BrQuatToMatrix34 () ;.

From Matrices and Other Transforms

See BrMatrix34ToTransform(),, and BrTransformToTransform() ;.

To Matrices and Other Transforms

See BrTransformToMatrix34 (),;; and BrTransformToTransform()s; as described below.

3 5 O Copyright © 1996 Argonaut Technologies Limited

br_transform

BrTransformToMatrix34 ()

Description: ~ Convert a generic transform to a 3D affine matrix, that would have the same
transformational effect.

Declaration: void BrTransformToMatrix34 (br matrix34* mat,
const br_transform* xform)

Arguments: br_matrix34 * mat

A pointer to the destination matrix to receive the conversion.

const br_transform * xform
A pointer to the source generic transform.

Effects: When the transform is the identity

Uses to BrMatrix34Identity (), to re-initialise the destination matrix to the
identity matrix.

When the transform is a translation

Uses to BrMatrix34Translate (), to re-initialise the destination matrix to a
translation matrix.

When the transform is a Euler angle set

Calls BrEulerToMatrix34 () ,,; and copies the transforms’ translation to the
respective elements of the destination matrix.

When the transform is a Look-Up

The normalised and negated Look vector provides the third row of the matrix.
The normalised cross product of this with the Up vector provides the first row.
The cross product of these two rows provides the second row.

The translation vector provides the fourth and last row.

When the transform is a quaternion

Calls BrQuatToMatrix34 () ;,, and copies the transforms’ translation to the
respective elements of the destination matrix.

When the transformis a 3X4 matrix
Directly copies the matrix from the source transform.
When the transform is a 3x4 length preserving matrix

Directly copies the matrix from the source transform.

BrTransformToTransform()

Description: ~ Convert from one transform to another, that would have the same transformational
effect (where possible).

Copyright © 1996 Argonaut Technologies Limited 3 5 1

br_transform

Declaration: void BrTransformToTransform(br transform* dest,
const br_transform* src)

Arguments: br_transform * dest

A pointer to the destination generic transform to receive the conversion. The
destination’s type member is unchanged.

const br transform * src

A pointer to the source generic transform to be converted.

Effects: When the transforms’ types are the same
The transform structure is copied entire.
When the destination transform is of matrix type
Calls BrTransformToMatrix34 () ,;; then normalises if necessary.
In other cases

Converts the transform via an intermediate 3x4 matrix by first calling
BrTransformToMatrix34 (),;; and then BrMatrix34ToTransform() .

Remarks: The transformation type in the destination transform must be set before conversion
. *
is performed .

In some cases it may not be possible to preserve all components of a transformation
across the conversion. For example, a conversion of a matrix to a quaternion would
lose any scaling or shearing components.

Copy/Assign

Although copy by structure assignment currently works, use BrTransformToTransform(),s; to
ensure compatibility.

Access & Maintenance

Only the members corresponding to the currently set type should be accessed. The type should not
be modified except for initialisation. The structure may be re-initialised, but any current references
must be expecting this. No specific maintenance required, but refer to the descriptions of underlying
structures for details of their maintenance requirements.

Referencing & Lifetime

This structure may be freely referenced, though take care when changing the type of a transform that
any current references will take note. In the same vein, try to avoid referencing members of ‘live’
transforms. The structure should remain valid as long as required by any references.

* This also applies to the order member of Euler transforms.

3 5 2 Copyright © 1996 Argonaut Technologies Limited

br_transform

Initialisation

First set the type member to the desired transform type and then initialise the appropriate members
using their respective assignment methods. The simplest initialisation is to the Identity, which is also
the only safe static initialisation.

Copyright © 1996 Argonaut Technologies Limited 3 5 3

br_ufraction

br ufraction

The Integral Type

The br_ufraction,, type can be used to represent numbers in the range [0,+1)". Although used
internally, this type is not generally supported by the BRender API. One of the few places in which
it is used is in specifying lighting coefficients of materials.

Under the floating point library, br_ufraction,, isa f1loat. Under the fixed point library,
br_ufraction,,,is a 16 bit unsigned fixed point number.

The typedef

(See scalar.h for precise declaration)

float br_ufraction Floating point Unsigned Fraction
br_fixed luf br_ufraction Fixed — Long Unsigned Fraction(0.16)
Arithmetic

No standard operators are supported. No macros are provided. Convert to br_scalar,,, and use that
type’s arithmetic macros instead.

Comparison

Equality and comparison with zero are valid. Other standard comparison operators may be
implemented by macros in future versions, but are currently valid.

Conversion

From Numeric Constants
BR_UFRACTION (x)

Convert x from any numeric constant to br_ufraction,,
BR_SCALAR_EPSILON

Smallest positive fractional value.

From Integral Types

To convert from integral types, use br_scalar,,, as an intermediary.

* Maximum value is thus BR_ONE_LS-BR_SCALAR_EPSILON (in the fixed point library).

3 5 4 Copyright © 1996 Argonaut Technologies Limited

br_ufraction

Frombr_scalar,,
br ufraction BrScalarToUFraction (br_scalar s)

Converts s frombr_scalar,,, to br_ufraction,,. Itis up to the application
to ensure the value is in the required range.

To Integral Types

To convert to integral types, use br_scalar,,, as an intermediary.

Tobr_scalar,,
br_scalar BrUFractionToScalar (br ufraction f)

Converts s frombr_ufraction,y tobr_scalar,,,. Itis up to the application
to ensure the value is in the required range.

Copy/Assign

Only assign zero, or fractions. Use conversions in all other cases.

Copyright © 1996 Argonaut Technologies Limited 3 5 5

br_uint_8/16/32

br uint 8/16/32

The Integral Type

BRender’s unsigned integer types. Use this type where the integer word length is critical.

The typedef

(See compiler.h for precise declaration)

unsigned char br_uint_8 8 bit unsigned integer
unsigned short br_uint_16 16 bit unsigned integer
unsigned long br_uint_32 32 bit unsigned integer
Arithmetic

All standard C arithmetic operators are valid as with standard integer types.

Comparison

All standard C comparison operators are valid as with standard integer types.

Conversion

Use casts as with any other standard C type.

Copy/Assign

Freely assign. Use as a standard C type, as this type is only concerned with ensuring specific sizes —
not representation.

3 5 6 Copyright © 1996 Argonaut Technologies Limited

br_vector?2

br vector2

The Structure

This is the two ordinate vector structure, typically used for 2D purposes. Functions are provided to
allow it be used as though it were an integral type.

The typedef

(See vector.h for precise declaration and ordering)

br_scalar v[2] Ordinates (0=x, 1=y)
Related Functions

Image Support

See BrOriginToScreenXY () 555, BrPointToScreenXY () ,s5, BrPointToScreenXYMany () »s,

Maths

See BrMatrix23ApplyP () ,, BrMatrix23ApplyV () ;s BrMatrix23TApplyP () 5,
BrMatrix23TApplyV () .

Related Structures

See br_matrix23,,, br_vertex,,.

Members
br_ scalar v[2]

First and second ordinate. Conventionally, the first ordinate is the x-axis component, and the second,
the y axis component.

Arithmetic

BrVector2Negate ()

Description: ~ Negate a vector and place the result in a second destination vector. Equivalent to
the expression:

Vl = —V2

Declaration: void BrVector2Negate (br_vector2* vl1l, const br_vector2* v2)

Copyright © 1996 Argonaut Technologies Limited 3 5 7

br_vector?2

Arguments: br_vector2 * vl

A pointer to the destination vector (may be same as source).

const br vector2 * v2

A pointer to the source vector.

BrVector2Add ()

Description: Add two vectors and place the result in a third destination vector.
Equivalent to the expression:
Vl = V2 + V3

Declaration: void BrVector2Add (br_vector2* vl, const br_vector2* v2,
const br_vector2* v3)

Arguments: br_vector2 * vl

A pointer to the destination vector (may be same as either source).

const br_vector2 * v2

A pointer to the first vector of the sum.

const br_vector2 * v3

A pointer to the second vector of the sum.

BrVector2Accumulate ()

Description: Add one vector to another. Equivalent to the expression:
Vl L= Vl + V2

Declaration: void BrVector2Accumulate (br_vector2* vil,
const br vector2* v2)

Arguments: br_vector2 * vl

A pointer to the accumulating vector (may be same as v2).

const br_vector2 * v2

A pointer to the vector to add.

BrVector2Sub ()

Description: Subtract one vector from another and place the result in a third destination vector.

Equivalent to the expression:

V&<V, —V;

3 5 8 Copyright © 1996 Argonaut Technologies Limited

br_vector?2

Declaration: void BrVector2Sub (br_vector2* vl, const br_vector2* v2,
const br vector2* v3)

Arguments: br_vector2 * vl

A pointer to the destination vector (may be same as vl or v2).

const br vector2 * v2

A pointer to the additive vector.

const br vector2 * v3

A pointer to the subtractive vector.

BrVector2Scale ()

Description: Scale a vector by a scalar and place the result in a destination vector. Equivalent to
the expression:

V, <=8V,
Declaration: void BrVector2Scale (br_vector2* vl, const br_vector2* v2,
br_scalar s)
Arguments: br_vector2 * vl
A pointer to the destination vector (may be same as source).
const br vector2 * v2
A pointer to the source vector.
br scalar s

Scale factor.

BrVector2InvScale ()

Description: Scale a vector by the reciprocal of a scalar and place the result in a destination
vector. Equivalent to the expression:
-1
Vl =S V2
Declaration: void BrVector2InvScale (br_vector2* vl, const br_vector2* v2,
br scalar s)
Arguments: br_vector2 * vl

A pointer to the destination vector (may be same as source).

const br_vector2 * v2

A pointer to the source vector.

br_scalar s

Reciprocal scale factor.

Copyright © 1996 Argonaut Technologies Limited 3 5 9

br_vector?2

BrVector2Dot ()

Description: Calculate the dot product of two vectors. Equivalent to the expression:
Vl * V2
Declaration: br scalar BrVector2Dot (const br_vector2* vil,
const br vector2* v2)

Arguments: const br_vector2 * vl

Pointer to left hand vector (may be same as v2).

const br vector2 * v2

Pointers to right hand vector.

Result: br_scalar

Returns the dot product of the two source vectors. Equivalent to:

(x; y1) - (X3 y2)=x1X+ Y1y,

BrVector2Length ()

Description: ~ Calculate the length of a vector. Equivalent to the expression:
vi|

Declaration: br_scalar BrVector2Length (const br_vector2* vl)

Arguments: const br_vector2 * vl

A pointer to the source vector.

Result: br_scalar

Returns the length of the vector. Equivalent to:

|(x1 }’1)| = /\/x% +}’%

See Also: BrVector2LengthSquared ()

BrVector2LengthSquared ()

Description: Calculate the squared length of a vector. Equivalent to the expression:
2
[vi]

or
Vl * Vl

Declaration: br_scalar BrVector2LengthSquared(const br_vector2* vl)

3 60 Copyright © 1996 Argonaut Technologies Limited

br_vector?2

Arguments: const br_vector2 * vl
A pointer to the source vector.
Result: br_scalar

Returns the squared length of the vector. Equivalent to:

|(x1)’1)|25x%+)’%

See Also: BrVector2Length () 5,

BrVector2Normalise ()

Description: ~ Normalise a vector and place the result in a destination vector. Equivalent to the
expression:

\p)

Vl L=
\f)
Declaration: void BrVector2Normalise (br_vector2* vil,
const br_vector2* v2)
Arguments: br_vector2 * vl
A pointer to the destination vector (may be same as source).
const br vector2 * v2
A pointer to the source vector.

Remarks: If the source vector’s length is zero™ the unit vector along the x axis is stored at the
destination instead.

Copy/Assign

Although copy by structure assignment currently works, use BrVector2Copy () ;4 to ensure
compatibility.

BrVector2Copy ()
Description: ~ Copy a vector. Equivalent to the expression:
Vi<V,

Declaration: void BrVector2Copy (br_vector2* vl, const br_vector2* v2)

* Or, in the fixed point library, too close to zero, i.e. less than or equal to 2*BR_SCALAR_FEPSILON.

Copyright © 1996 Argonaut Technologies Limited 3 6 1

br_vector?2

Arguments: br_vector2 * vl

A pointer to the destination vector (may be same as source).

const br vector2 * v2

A pointer to the source vector.

Referencing & Lifetime

This structure may be freely referenced, though take care if there is potential to supply the same
vector as more than one argument to the same function.

Initialisation
The following macro may be used as a static initialiser.
BR_VECTOR2 (a, b)

Macro expands to {BR_SCALAR (a) , BR_SCALAR(b) }.

All other initialisation should use the functions, BrVector2Set () 5, BrVector2SetInt () 5,
BrVector2SetFloat () ;s Or BrVector2Copy () 34.-

BrVector2Set ()

Description: ~ Set a vector with a pair of scalars.
Declaration: void BrVector2Set (br_vector2* vl, br scalar sl, br_scalar s2)
Arguments: br_vector2 * vl

A pointer to the destination vector.

br_scalar sl

The first vector element (x axis component).

br_scalar s2

The second vector element (y axis component).

Example:

br_vector2 *va;

BrVector2Set (va, BR_SCALAR(1.0),BR_SCALAR(-1.0));

BrVector2SetFloat ()

Description: Set a vector from a pair of standard C floating point numbers.

3 6 2 Copyright © 1996 Argonaut Technologies Limited

br_vector?2

Declaration: void BrVector2SetFloat (br_vector2* vl, float fl1l, float £2)
Arguments: br_vector2 * vl

A pointer to the destination vector.

float f1

The first vector element (x axis component).

float £f2

The second vector element (y axis component).
Example:

br_vector2 *va;

BrVector2Set (va,1.f,-1.f);

BrVector2SetlInt ()

Description: Set a vector from a pair of standard C integers.
Declaration: void BrVector2SetInt (br_vector2* vl, int il, int i2)
Arguments: br_vector2 * vl

A pointer to the destination vector.

int il

The first vector element (x axis component).

int i2

The second vector element (y axis component).

Example:

br_vector2 *va;

BrVector2Set (va,1,-1);

Copyright © 1996 Argonaut Technologies Limited 3 63

br_vector3

br wvector3

The Structure

This is the three ordinate vector structure, typically used for 3D calculations. Functions are provided
to allow it be used as though it were an integral type.

The typedef

(See vector.h for precise declaration and ordering)

br_scalar v[3] Ordinates (0=x, 1=y, 2=g3)
Related Functions

Image Support

See BrOriginToScreenXYZO () ,s, BrPointToScreenXYZO () ,s;
BrPointToScreenXYZOMany () ,ss.

Maths

See BrMatrix34[PrelPost]|Rotate () sy BrMatrix[3414][T]Apply[VIP] () 051060102201

Related Structures

See br_matrix23,,, br_matrix34,, br model,,, br_vertex,,, br transform,,,
br_bounds,,.

Members

br_ scalar v[3]

First, second and third ordinate. Conventionally, the first ordinate is the x-axis component, the
second, the y axis component, and the third, the z axis component. Remember that BRender has a
right handed co-ordinate system and so, with the x axis positive to the right, and the y axis positive
upwards, the z axis is therefore positive toward you (typically, the z axis points out of the screen).

3 6 4 Copyright © 1996 Argonaut Technologies Limited

br_vector3

Arithmetic

BrVector3Negate ()

Description: ~ Negate a vector and place the result in a second destination vector. Equivalent to
the expression:

Vl = —V2
Declaration: void BrVector3Negate (br_vector3* vl1l, const br_vector3* v2)
Arguments: br_vector3 * vl

A pointer to the destination vector (may be same as source).
const br vector3 * v2

A pointer to the source vector.

BrVector3Add ()

Description: Add two vectors and place the result in a third destination vector.
Equivalent to the expression:
Vl L= V2 + V3

Declaration: void BrVector3Add (br_vector3* vl, const br_vector3* v2,
const br vector3* v3)

Arguments: br_vector3 * vl

A pointer to the destination vector (may be same as either source).

const br vector3 * v2

A pointer to the first vector of the sum.

const br vector3 * v3

A pointer to the second vector of the sum.

BrVector3Accumulate ()

Description: ~ Add one vector to another. Equivalent to the expression:
Vl = Vl + V2

Declaration: void BrVector3Accumulate (br_vector3* vil,
const br_ vector3* v2)

Copyright © 1996 Argonaut Technologies Limited 3 6 5

br_vector3

Arguments:

br vector3 * vl

A pointer to the accumulating vector (may be same as v2).

const br vector3 * v2

A pointer to the vector to add.

BrVector3Sub ()

Description:

Declaration:

Arguments:

Subtract one vector from another and place the result in a third destination vector.

Equivalent to the expression:

V, &V, —V;

void BrVector3Sub (br vector3* vl, const br_vector3* v2,
const br_vector3* v3)

br vector3 * vl

A pointer to the destination vector (may be same as v2 or v3).

const br_vector3 * v2

A pointer to the additive vector.

const br_vector3 * v3

A pointer to the subtractive vector.

BrVector3Scale ()

Description:

Declaration:

Arguments:

366

Scale a vector by a scalar and place the result in a destination vector. Equivalent to
the expression:

V, &5V,

void BrVector3Scale (br_vector3* vl, const br vector3* v2,
br scalar s)

br vector3 * vl

A pointer to the destination vector (may be same as source).

const br_vector3 * v2

A pointer to the source vector.

br_scalar s

Scale factor.

Copyright © 1996 Argonaut Technologies Limited

br_vector3

BrVector3InvScale ()

Description: Scale a vector by the reciprocal of a scalar and place the result in a destination
vector. Equivalent to the expression:

-1
Vl =S V2

Declaration: void BrVector3InvScale (br_vector3* vl, const br_vector3* v2,

br scalar s)
Arguments: br_vector3 * vl

A pointer to the destination vector (may be same as source).

const br vector3 * v2

A pointer to the source vector.

br scalar s

Reciprocal scale factor.

BrVector3Dot ()

Description: ~ Calculate the dot product of two vectors. Equivalent to the expression:
Vl : V2
Declaration: br_scalar BrVector3Dot (const br_vector3* vil,
const br_vector3* v2)
Arguments: const br_vector3 * vl

Pointer to left hand vector (may be same as v2).

const br_vector3 * v2

Pointers to right hand vector (may be same as v1).

Result: br_scalar

Returns the dot product of the two source vectors. Equivalent to:

(X1 y1 21) (x5 Y2) =X X+ y 1Y+ 212,

BrVector3Cross ()

Description: Calculate the cross product of two vectors and store the result in a destination
vector. Equivalent to the expression:

V, &V, XV,

Declaration: void BrVector3Cross (br_vector3* vl, const br_vector3* v2,
const br_vector3* v3)

Copyright © 1996 Argonaut Technologies Limited 3 6 7

br_vector3

Arguments: br_vector3 * vl
Pointer to destination vector (must be different from both v1 and v2).
const br vector3 * v2
Pointer to left hand vector.
const br vector3 * v3
Pointers to right hand vector.

Remarks: The cross product of the two source vectors is equivalent to:

(X2 Yo 22)X(x3 ¥3 23)=(0223—22)3 2X3— X323 XpV3— YoX3)

BrVector3Length ()
Description: ~ Calculate the length of a vector. Equivalent to the expression:
Vil
Declaration: br_scalar BrVector3Length (const br_vector3* vl)
Arguments: const br_vector3 * vl

A pointer to the source vector.

Result: br_scalar

Returns the length of the vector. Equivalent to:

2 2 2
|(X1 Y1 Zl)|= X1+y1+23

See Also: BrVector3LengthSquared();;

BrVector3LengthSquared ()

Description: ~ Calculate the squared length of a vector. Equivalent to the expression:
2
vi|
or
Vl * Vl

Declaration: br_scalar BrVector3LengthSquared(const br_ vector3* vl)
Arguments: const br_vector3 * vl
A pointer to the source vector.
Result: br_scalar

Returns the squared length of the vector. Equivalent to:

2 2 2 2
|(x1 Vi Z1)| =X+t

See Also: BrVector3Length (),

3 6 8 Copyright © 1996 Argonaut Technologies Limited

br_vector3

BrVector3Normalise ()

Description: ~ Normalise a vector and place the result in a destination vector. Equivalent to the
expression:

\p)

Vl L=
\f!
Declaration: void BrVector3Normalise (br_vector3* vil,
const br vector3* v2)
Arguments: br_vector3 * vl
A pointer to the destination vector (may be same as source).
const br_vector3 * v2
A pointer to the source vector.

Remarks: If the source vector’s length is zero™ the unit vector along the x axis is stored at the
destination instead.

BrVector3NormaliseQuick ()

Description: ~ Normalise a vector with non-zero length and place the result in a destination vector.
Equivalent to the expression:

\p)

Vl &=
\L)
Declaration: void BrVector3NormaliseQuick (br_vector3* vil,
const br vector3* v2)
Arguments: br_vector3 * vl
A pointer to the destination vector (may be same as source).
const br vector3 * v2
A pointer to the source vector.

Remarks: No check made for zero length, hence quicker.

* Or, in the fixed point library, too close to zero, i.e. less than or equal to 2*BR_SCALAR_FEPSILON.

Copyright © 1996 Argonaut Technologies Limited 3 69

br_vector3

BrVector3NormaliseLP ()

Description: Normalise a vector with non-zero length using low precision” arithmetic and place
the result in a destination vector. Equivalent to the expression:

vV, & |V2|_1V2
Declaration: void BrVector3NormaliseLP (br_vector3* vl,
const br_vector3* v2)
Arguments: br_vector3 * vl
A pointer to the destination vector (may be same as source).
const br vector3 * v2

A pointer to the source vector.

Remarks: No check is made for zero length. The destination vector will be left unchanged if
the reciprocal of length of the vector is zero.

Copy/Assign

Although copy by structure assignment currently works, use BrVector3Copy () ;;; to ensure
compatibility.

BrVector3Copy ()

Description: ~ Copy a vector. Equivalent to the expression:

Vl L= V2
Declaration: void BrVector3Copy (br_vector3* vl1l, const br_vector3* v2)
Arguments: br_vector3 * vl

A pointer to the destination vector (may be same as source).

const br vector3 * v2

A pointer to the source vector.

Referencing & Lifetime

This structure may be freely referenced, though take care if there is potential to supply the same
vector as more than one argument to the same function.

* Thus LP in the function name — do not be confused with the use of this mnemonic for ‘length preserving’.

3 70 Copyright © 1996 Argonaut Technologies Limited

br_vector3

Initialisation
The following macro may be used as a static initialiser.
BR_VECTOR3 (a, b, c)

Macro expands to {BR_SCALAR (a) , BR_SCALAR (b) ,BR_SCALAR(cC) }.

All other initialisation should use the functions, BrVector3Set () ;,, BrVector3SetInt () 5,
BrVector3SetFloat () ;;, or BrVector3Copy () 37;-

BrVector3Set ()

Description: Set a vector with a triple of scalars.

Declaration: void BrVector3Set (br_vector3* vl, br_scalar sl, br_scalar s2,
br_scalar s3)

Arguments: br_vector3 * vl
A pointer to the destination vector.
br scalar sl
The first vector element (x axis component).
br scalar s2
The second vector element (y axis component).
br scalar s3
The third vector element (z axis component).

Example:

br_vector3 *va;

BrVector3Set (va, BR_SCALAR(1.0),BR_SCALAR(-1.0),BR_SCALAR(2.0));

BrVector3SetFloat ()

Description: ~ Set a vector from a triple of standard C floating point numbers.

Declaration: void BrVector3SetFloat (br_vector3* vl1, float f1l, float f£2,
float £3)

Copyright © 1996 Argonaut Technologies Limited 3 7 1

br_vector3

Arguments:

Example:

br vector3 * vl

A pointer to the destination vector.
float f1

The first vector element (x axis component).
float £f2

The second vector element (y axis component).
float f£3

The third vector element (z axis component).

br_vector3 *va;

BrVector3Set(va,l1.f,-1.£,1.5f);

BrVector3SetInt ()

Description:
Declaration:

Arguments:

Example:

Set a vector from a triple of standard C integers.
void BrVector3SetInt (br vector3* vil,
br_vector3 * vl

A pointer to the destination vector.

int il

The first vector element (x axis component).
int i2

The second vector element (y axis component).
int i3

The third vector element (z axis component).

br_vector3 *va;

BrVector3Set(va,1l,-1,2);

int il,

int i2,

int i3)

372

Copyright © 1996 Argonaut Technologies Limited

br_vector4

br vector4

The Structure

This is the four ordinate vector structure, typically used to hold homogenous 3D co-ordinates.
Functions are provided to allow it be used as though it were an integral type.

The typedef

(See vector.h for precise declaration and ordering)

br_scalar v[4] Ordinates (0=x, 1=y, 2=3, 3=w)
Related Functions

See BrMatrix34TApply () o5, BrMatrix4[T]Apply[VIP] () 5160

Related Structures

See br_matrix4,,,.

Members

br_scalar v[4]

First, second, third and fourth ordinate. Conventionally, the first ordinate is the x-axis component,
the second, the y axis component, the third, the z axis component, and the fourth, the divisor.

Remember that BRender has a right handed co-ordinate system and so, with the x axis positive to the
right, and the y axis positive upwards, the z axis is therefore positive toward you (typically, the z axis
points out of the screen).

Arithmetic

BrVector4Dot ()

Description: ~ Calculate the dot product of two vectors. Equivalent to the expression:
Vl * V2

Declaration: br_scalar BrVector4Dot (const br_ vectord* vl,
const br_ vector4d* v2)

Arguments: const br vectord4 * vl

Pointer to left hand vector (may be same as source).

Copyright © 1996 Argonaut Technologies Limited 3 7 3

br_vectori4

const br vectord * v2
Pointers to right hand vector.
Result: br_scalar

Returns the dot product of the two source vectors. Equivalent to:

(X1 y1 21 W) (X3 Yo 20 Wo) =X X+ Y10+ 2120+ Wiw,

Copy/Assign

Although copy by structure assignment currently works, use BrVector4Copy () ;;; to ensure
compatibility.

BrVector4Copy ()
Description: ~ Copy a vector. Equivalent to the expression:
V&=V,
Declaration: void BrVector4Copy (br_vectord4* vl, const br_vectord* v2)

Arguments: br_vector4d * vl

A pointer to the destination vector (may be same as source).

const br vectord * v2

A pointer to the source vector.

Referencing & Lifetime

This structure may be freely referenced, though take care if there is potential to supply the same
vector as more than one argument to the same function.

Initialisation

The following macro may be used as a static initialiser.
BR_VECTOR4 (a,b, c,d)

Macro expands to
{BR_SCALAR(a),BR_SCALAR(b),BR_SCALAR(c),BR_SCALAR(d) }.

All other initialisation should use member-wise initialisation or the function BrVector4Copy () 37;.

3 7 4 Copyright © 1996 Argonaut Technologies Limited

br_vertex

br vertex

Overview

The vertex data structure, describing a single vertex in a model.

The typedef

(See model.h for precise declaration and ordering)

Position

br_vector3 P Co-ordinates of a point in model space

Texture and Lighting

br_vector2 map Texture co-ordinates of this vertex
br_uint_8 index Colour index for pre-lit models
br_uint_8 red, grn, blu True colour values for pre-lit model
Related Functions

See BrModelApplyMap () ,;; and BrModelFitMap (), to set texture co-ordinates. See
BrSceneModelLight (), to set pre-lit values.

Related Structures

See br_model,,, for the structure in which vertices are used.

See br_material,,, for details of how pre-lighting information is used.

Members
Position

br_vector3 p

The co-ordinates of a point (in the model’s co-ordinate space) representing the vertex of a group of
faces (typically triangular).

For example, a cube has eight vertices. If it had unit side and was centred about (0,0,0), it would have
vertices (0.5,0.5,0.5), (0.5,0.5,-0.5), etc. Faces are polygons (typically triangles) described in terms of
a number of vertex indices.

Copyright © 1996 Argonaut Technologies Limited 3 7 5

br_vertex

Texture and Lighting

br_vector?2 map

The 2D co-ordinates at which this vertex appears in an infinitely” tiled texture map.

br uint 8 index

Pre-computed lighting index at this vertex. See br_material,, for how this relates to pre-lit
materials.

br_uint_8 red, grn, blu

Pre-computed light level at this vertex (in terms of colour intensities’). See br_material,,, for how
this relates to pre-lit materials.

Copy/Assign

Do not use structure assign. Use member-wise copy only.

Access & Maintenance

Members may be freely accessed. Models referencing vertices that are changed should be updated
using BrModelUpdate (),,, before rendering. There are private members of vertices that are
modified during BrModelUpdate () ,,-

Referencing & Lifetime

Be careful of referencing vertices especially ones allocated by BrModelAllocate () ,,;, they are
liable to be moved around during BrModelUpdate () ,,;, say. Vertices are generally only allocated as
arrays completely describing a model. Always access using indexing from the model’s vertices
member.

Initialisation

Use memset (, 0, sizeof (br_vertex)) and set members as appropriate. Updating of models
referencing initialised vertices will be needed before there are involved in rendering.

Construction & Destruction

Vertices may be constructed conventionally, but BR_MODF_KEEP_ORIGINAL must be specified in any
model that refers to them. Otherwise use BrModelAllocate () ;.

* Subject of course to limits of br_scalar representation.
¥ Not all platforms support coloured lights.

3 7 6 Copyright © 1996 Argonaut Technologies Limited

br_vertex

Supplementary

When constructed by BrModelAllocate () ,,; vertices are allocated from the “VERTICES” memory
class. It is probably better to organise any enumeration around models (see br_model,;,,).

Import & Export

Vertices are included with model definitions. See br_model,,, for details of import/export functions.

Copyright © 1996 Argonaut Technologies Limited 3 7 7

brfile_advance_cbfn

brfile advance cbfn

The Call-Back Function

This type defines a stream advance function, primarily intended for the advance member of the
br_filesystem,, structure.

The typedef

(See brfile.h fora precise declaration)

void brfile_advance_cbfn (br_size_t,void*) Advance
Specification

CBFnFileAdvance ()

Description: ~ An application defined call-back function advancing a file pointer a number of
bytes through a binary stream.

Declaration: void BR_CALLBACK CBFnFileAdvance (br_size_t count, void* f)
Arguments: br size_t count
Number of bytes to advance.
void * £
Valid file handle - as returned by CBFnFileOpenRead (),; and
CBFnFileOpenWrite () .

Preconditions: ~ BRender has completed initialisation. BRender is the only direct caller of this
function.

Effects: Advance file position by count bytes.

Example: See stdfile.c for examples of filing system functions.

3 7 8 Copyright © 1996 Argonaut Technologies Limited

brfile_attributes_cbfn

brfile attributes cbfn

The Call-Back Function

This type defines a filing system capabilities enquiry function, primarily intended for the
attributes member of the br_filesystem,,, structure.

The typedef

(See brfile.h fora precise declaration)

br_uint_32 brfile_attributes_cbfn (void) Get attributes of filing system
Specification

CBFnFileAttributes ()

Description: An application defined call-back function returning capabilities of the filing
system.

Declaration: br_uint_32 BR_CALLBACK CBFnFileAttributes (void)

Preconditions: ~ BRender has completed initialisation. BRender is the only direct caller of this
function.

Effects: None.
Result: br_uint_32

The attributes of the filing system. Its capabilities as defined by a combination of
the following flag values:

Flag Attribute

BR_FS_ATTR_READABLE Filing system can read files
BR_FS_ATTR_WRITEABLE Filing system can write files
BR_FS_ATTR_HAS_TEXT Filing system can interpret ASCII text files

BR_FS_ATTR_HAS_BINARY Filing system can support binary files, i.e.
maintains integrity of streams of any combination
of bytes (8 bit).
BR_FS_ATTR_HAS_ADVANCE | Filing system can directly skip bytes

Example: See stdfile.c for examples of filing system functions.

Copyright © 1996 Argonaut Technologies Limited 3 7 9

brfile_close_cbfn

brfile close cbfn

The Call-Back Function

This type defines a file close function, primarily intended for the c1ose member of the
br_filesystem,, structure.

The typedef

(See brfile.h fora precise declaration)

void brfile_close_cbfn (void*) Close file
Specification

CBFnFileClose()

Description: ~ An application defined call-back function closing a previously opened file.
Declaration: void BR_CALLBACK CBFnFileClose (void* f)
Arguments: void * £
Valid file handle - as returned by CBFnFileOpenRead (),,; and
CBFnFileOpenWrite () .

Preconditions: ~ BRender has completed initialisation. BRender is the only direct caller of this
function.

Effects: Close file.

Example: ~ See stdfile.c for examples of filing system functions.

3 80 Copyright © 1996 Argonaut Technologies Limited

brfile_eof_cbfn

brfile eof cbfn

The Call-Back Function

This type defines an end of file test function, primarily intended for the eof member of the
br_filesystem,, structure.

The typedef

(See brfile.h fora precise declaration)

int brfile_eof_cbfn(const void *) Testforend offile
Specification

CBFnFileEOF ()

Description: An application defined call-back function testing a file pointer for end of file.
Declaration: int BR_CALLBACK CBFnFileEOF (const void* f£f)
Arguments: const void * £
Valid file handle - as returned by CBFnFileOpenRead (); and
CBFnFileOpenWrite () .

Preconditions: ~ BRender has completed initialisation. BRender is the only direct caller of this
function.

Effects: None.

Result: int
Returns a non-zero value after the first read operation that attempts to read past the
end of the file. It returns 0 if the current position is not end of file.

Example: See stdfile.c for examples of filing system functions.

Copyright © 1996 Argonaut Technologies Limited 3 8 1

brfile_getchr_cbfn

brfile getchr_ cbfn

The Call-Back Function

This type defines a get character function, primarily intended for the getchr member of the
br_filesystem,, structure.

The typedef

(See brfile.h fora precise declaration)

int brfile_getchr_cbfn (void *) Getcharacter
Specification

CBFnFileGetChr ()

Description: An application defined call-back function reading a character from a file.
Declaration: int BR_CALLBACK CBFnFileGetChr (void* f£f)
Arguments: void * £

Valid file handle - as returned by CBFnFileOpenRead () ;.

Preconditions: ~ BRender has completed initialisation. BRender is the only direct caller of this
function.

Effects: If the file position is at the end of the file, the file enters the end-of-file state,
otherwise a character is read and the file position is advanced.

Result: int
The character read from the file is returned (as though the character had been cast

as (int) (unsigned char)). Ifa character could not be read because the file
position was at the end of the file, BR_EOF is returned.

Example: See stdfile.c for examples of filing system functions.

3 8 2 Copyright © 1996 Argonaut Technologies Limited

brfile_getline_cbfn

brfile _getline_cbfn

The Call-Back Function

This type defines a get line function, primarily intended for the get1ine member of the
br_filesystem,, structure.

The typedef

(See brfile.h fora precise declaration)

br_size_t

brfile_getline_cbfn (char*,br_size_t,void*) Getline

Specification

CBFnFileGetLine ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Result:

Example:

An application defined call-back function reading a line of text (excluding
terminators) from a file.

br_size_t BR_CALLBACK CBFnFileGetLine (char* buf,
br_size_t buf_ len, void* f)

char * buf

Buffer to hold text read.

br size t buf len

Length of buffer (maximum number of characters to store - including “\0).
void * £

Valid file handle - as returned by CBFnFileOpenRead () ;-

BRender has completed initialisation. BRender is the only direct caller of this
function.

Read characters into supplied buffer until buf_len-1 characters have been read,
end of line has been read, or end of file has been reached. If the last character read
was ‘\n’ it is removed from the buffer.

br size t

The number of characters stored in the buffer is returned. If at the end of file upon
entry, zero will be returned.

See stdfile.c for examples of filing system functions.

Copyright © 1996 Argonaut Technologies Limited 3 8 3

brfile_open_read_cbfn

brfile open_read cbfn

The Call-Back Function

This type defines a stream advance function, primarily intended for the open_read member of the
br_filesystem,, structure.

The typedef

(See brfile.h fora precise declaration)

void¥*

brfile_open_read_cbfn(const char*, br_size_t,
br _mode_test_cbfn*, int¥*)

Specification

CBFnFileOpenRead ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Result:

384

An application defined call-back function to open a file for read access.

void* BR_CALLBACK CBFnFileOpenRead (const char* name,
br_size_t n_magics, br_mode_test_cbfn* mode_test,
int* mode_result)

const char * name

Name of file.

br_size_t n_magics

Number of characters required for mode_test to determine file type (less than
or equal to BR_MAX_FILE_MAGICS).

br_mode_test_cbfn mode_test

Call-back function that can be used to determine file type given the first
n_magics characters of a file. Will not be used if NULL.

int * mode_result

If this argument is non-NULL, the file type (if it could be determined) will be stored
at the address pointed to.

BRender has completed initialisation. BRender is the only direct caller of this
function.

Searches for a file called name, if no path is specified with the file, looks in the
current directory, if not found tries, in order, the directories listed in
BRENDER_PATH (if defined). Having found the file, use mode_test (if
supplied) to find out if the file is text, binary or unknown. Store the result through
mode_result (if non-NULL). Obtain a handle to the file.

void *

Return a file handle or NULL if the file could not be opened.

Copyright © 1996 Argonaut Technologies Limited

brfile_open_read_cbfn

Remarks: Text mode files are primarily used for debugging but can be useful to allow hand
editing of input data.

Example: See stdfile.c for examples of filing system functions.

Copyright © 1996 Argonaut Technologies Limited 3 8 5

brfile_open_write_cbfn

brfile_ open_write_cbfn

The Call-Back Function

This type defines a function to open a file for writing, primarily intended for the open_write
member of the br_filesystem,,, structure.

The typedef

(See brfile.h fora precise declaration)

void * brfile_open_write_cbfn (const char*, int) Open filefor writing
Specification

CBFnFileOpenWrite ()

Description: ~ Open a file for writing, overwriting any existing file of the same name.

Declaration: void* BR_CALLBACK CBnFileOpenWrite (const char* name,
int mode)

Arguments: const char * name
Name to open file as.
int mode
Mode in which to open file (BR_FS_MODE_TEXT or BR_FS_MODE_BINARY).

Preconditions: ~ BRender has completed initialisation. BRender is the only direct caller of this
function.

Effects: Overwrite or create file using specified name and mode.
Result: void *
Return a file handle or NULL if the file could not be opened.

Example: See stdfile.c for examples of filing system functions.

3 8 6 Copyright © 1996 Argonaut Technologies Limited

brfile_putchr_cbfn

brfile putchr_ cbfn

The Call-Back Function

This type defines function to write a character to a file, primarily intended for the putchr member
of the br_filesystem,, structure.

The typedef

(See brfile.h fora precise declaration)

void brfile_putchr_cbfn(int, wvoid *) Write character to stream
Specification

CBEFnFilePutChr ()

Description: An application defined call-back function writing a single character to file.
Declaration: void BR_CALLBACK CBFnFilePutChr (int ¢, wvoid* f£f)
Arguments: int c

Character to write.

void * £

Valid file handle - as returned by CBFnFileOpenWrite () ;.

Preconditions: ~ BRender has completed initialisation. BRender is the only direct caller of this
function.

Effects: ~ Write the character to the file.

Example: See stdfile.c for examples of filing system functions.

Copyright © 1996 Argonaut Technologies Limited 3 8 7

brfile_putline_cbfn

brfile putline_cbfn

The Call-Back Function

This type defines a function to write a line of text to a file, primarily intended for the putline
member of the br_filesystem,,, structure.

The typedef

(See brfile.h fora precise declaration)

void

brfile_putline_cbfn (const char*, void*) Write a line of text

Specification

CBFnFilePutLine ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Example:

An application defined call-back function writing a line of text to a file, followed by
writing the new-line character (“\n’).

void BR_CALLBACK CBFnFilePutLine (const char* buf, void* f)
const char * buf

Pointer to zero terminated string containing line of text to be written.

void * £

Valid file handle - as returned by CBFnFileOpenWrite () ;.

BRender has completed initialisation. BRender is the only direct caller of this
function.

Write the string to the file. Write the new-line character to the file (“\n’).

See stdfile.c for examples of filing system functions.

388

Copyright © 1996 Argonaut Technologies Limited

brfile_read_cbfn

brfile read cbfn

The Call-Back Function

This type defines a function to read a block from a file, primarily intended for the read member of
the br_filesystem,,, structure.

The typedef

(See brfile.h fora precise declaration)

br_size_t brfile_read_cbfn(void*,br_size_t,unsigned, void*) Read block

Specification

CBFnFileRead ()

Description: ~ An application defined call-back function reading a block from a file.

Declaration: br size_t BR _CALLBACK CBFnFileRead (void* buf, br size_t size,
unsigned int nelems, void* f)

Arguments: void * buf
Buffer to receive block.
br size t size
Size of each element in block.
unsigned int nelems
Maximum number of elements to read.
void * £
Valid file handle - as returned by CBFnFileOpenRead () 5.

Preconditions: ~ BRender has completed initialisation. BRender is the only direct caller of this
function.

Effects: Read up tonelems elementsof size bytes from the file £ and store them in
buf.

Result: br_size t

Return the number of complete elements read, which may be less than nelems if
the end of file is encountered before all the elements could be read.

Example: See stdfile.c for examples of filing system functions.

Copyright © 1996 Argonaut Technologies Limited 3 89

brfile_write_cbfn

brfile write cbfn

The Call-Back Function

This type defines a function to write a block to a file, primarily intended for the write member of
the br_filesystem,,, structure.

The typedef

(See brfile.h fora precise declaration)

br_size_t brfile write_cbfn(const void*,br_ size_ t,unsigned, void*) Write
block

Specification

CBEFnFileWrite ()

Description: An application defined call-back function writing a block to a file.

Declaration: br size_t BR_CALLBACK CBFnFileWrite (const void* buf,
br_size_t size, unsigned int nelems, void* f)

Arguments: const void * buf
Buffer containing block to be written.
br_size_t size
Size of each element in block.
unsigned int nelems
Maximum number of elements to write.
void * £
Valid file handle - as returned by CBFnFileOpenWrite () ;.

Preconditions: ~ BRender has completed initialisation. BRender is the only direct caller of this
function.

Effects: Write up to nelems elements from buf to the file £.

Result: br_size t
Return the number of complete elements written, which may be less than nelems
if an error occurs (such as running out of file space).

Example: See stdfile.c for examples of filing system functions.

3 90 Copyright © 1996 Argonaut Technologies Limited

brmem_allocate_cbfn

brmem allocate cbfn

The Call-Back Function

This type defines a memory allocation function, primarily intended for the al1locate member of the
br_allocator,,, structure.

The typedef

(See brmem.h for a precise declaration)

void *

brmem allocate_cbfn(br_size_t,br_ uint_8) Allocator

Specification

CBFnMemAllocate ()

Description:

Declaration:

Arguments:

Preconditions:

Effects:

Result:

An application defined call-back function returning a pointer to newly allocated
memory of specified size and type.

void* BR_CALLBACK CBFnMemAllocate (br_size t size,

br_uint_8 type)

br size t size

Size in bytes of memory block required. More bytes may be allocated, but the caller
will only use the first size bytes. Zero is a valid value.

br_uint_8 type

Class (type ID) of memory required. Although it is possible for the class to be
ignored, it may be used for diagnostic purposes, or could be used to provide a more

efficient allocation scheme. See Memory Classes for a description of possible
values.

The diagnostic handler has been setup (BrDiagHandlerSet () ,,4). BRender has
not necessarily completed initialisation. This may not be the first allocator to have
been called. BRender is the only direct caller of this function.

Obrain a fixed, contiguous, persistent, readable, writable, non-volatile area of
memory of at least the size specified (even if zero), that will remain so until a
corresponding call of CBFnMemFree () 5, has occurred.

void *

The address of a block of memory of the required size. If the request cannot be
satisfied, return NULL.

No assumption can be made concerning any relation between the address returned
by this call and any previous or subsequent call.

Copyright © 1996 Argonaut Technologies Limited 3 9 1

brmem_allocate_cbfn

Remarks: Although BRender’s default diagnostic handling system does not use the memory
handler, if you supply a diagnostic handler that does, you may have to handle
memory allocation failures directly.

The value returned by CBFnMemIngquire () ,,, does not guarantee the
subsequent success or failure of CBFnMemAllocate () .

Example: ~ See stdmem. c for examples of memory allocation functions.

See Also: CBFnMemFree () ;,,, CBFnMemInquire ().

3 9 2 Copyright © 1996 Argonaut Technologies Limited

brmem_free_cbfn

brmem free cbfn

The Call-Back Function

This type defines a memory deallocation function, primarily intended for the free member of the
br_allocator,,, structure.

The typedef

(See brmem.h for a precise declaration)
void brmem_ free_cbfn (void *) Deallocator

Specification

CBFnMemF'ree ()

Description: An application defined call-back function that will reclaim memory previously
allocated by CBFnMemAllocate () ;-

Declaration: void BR_CALLBACK CBFnMemFree (void* block)

Arguments: void * block

Address of memory no longer required, previously returned by the corresponding
CBFnMemAllocate (), (with no intervening CBFnMemFree () ;,). NULL is
ignored.

Preconditions: ~ The diagnostic handler has been setup (BrDiagHandlerSet () ;o). BRender has
not necessarily completed initialisation. Other allocation handlers may have
already been used. BRender is the only direct caller of this function. The
application has disposed of all references to the memory (obtained using the
supplied address).

Effects: Release supplied memory (presumably making it available for re-use).
If the supplied address is invalid (not recognised as previously allocated by the
corresponding CBFnMemAllocate ()), consider this a failure condition and

handle appropriately. Note that the BRender diagnostic handling system may not
be available, or even capable of handling this condition.

Remarks: The memory freed will not necessarily increase the value returned by
CBFnMemInquire (),y, though it is of course a hopeful effect.
The application should immediately set to NULL all pointers referencing the
memory freed, (at least in a debug version).
Example: See stdmem. c for examples of memory deallocation functions.
See Also: CBFnMemAllocate ()., CBFnMemInquire () ;.

Copyright © 1996 Argonaut Technologies Limited 3 9 3

brmem_inquire_cbfn

brmem inquire_cbfn

The Call-Back Function

This type defines a memory inquiry function, primarily intended for the inquire member of the
br_allocator,,, structure.

The typedef

(See brmem.h for precise declaration)

br_size_t

brmem_inquire_cbfn (br_uint_8) Inquiry function

Specification

CBFnMemInquire ()

Description:
Declaration:

Arguments:

Preconditions:

Effects:

Result:

Remarks:

394

An application defined call-back function providing details of memory availability.
br_size_t BR_CALLBACK CBFnMemInquire (br_uint_8 type)
br_uint_8 type

Class of memory for which information is required. See Memory Classes for a
description of possible values.

The diagnostic handler has been setup (BrDiagHandlerSet () ,,,). BRender has
not necessarily completed initialisation. Other allocation handlers may have
already been used. BRender is the only direct caller of this function.

Calculate an estimate of available memory for a particular memory class. This
should be the total number of free bytes, irrespective of fragmentation or likely
block-header overheads. If the class memory space would be extended, then the
estimate should be of the potential maximum size available.

br_size_t
The total number of bytes remaining unallocated in the specified memory class.

"This function is only intended to provide an estimate of available memory. It does
not guarantee that a particular allocation would succeed (or fail). However, it could
be used as an indication of likely success or failure.

There is no relation defined between the values returned for each class. In some
allocation schemes, each class may have a separate and fixed amount of memory set
aside, whereas in other schemes, all classes may be sharing all memory.

There is no relation defined between the true amount of memory (whether virtual
or physical) in a system, and the value returned by this function.

Copyright © 1996 Argonaut Technologies Limited

brmem_inquire_cbfn

Example: See stdmem. c for examples of memory inquiry functions.
See Also: CBFnMemAllocate (), CBFnMemFree () .

Copyright © 1996 Argonaut Technologies Limited 3 9 5

brmem_inquire_cbfn

3 9 6 Copyright © 1996 Argonaut Technologies Limited

brmem_inquire_cbfn

Copyright © 1996 Argonaut Technologies Limited 3 9 7

brmem_inquire_cbfn

3 9 8 Copyright © 1996 Argonaut Technologies Limited

Indices 5

400 Copyright © 1996 Argonaut Technologies Limited

Macro Index

A

ASSERT () vt eteeeeeeeeeee e 67
B

BROABS ()t evteneee e aeeaaaeanss 332
BROACOS () «veeeeeeeeeeeeeaeaeanss 103
BR_ACTOR_BOUNDScun.... 20, 77, 261
BR_ACTOR_BOUNDS_CORRECT . .20, 77, 261
BR_ACTOR_CAMERA .. .uvvneenenn.n. 19, 77
BR_ACTOR_CLIP_PLANE 77
BR_ACTOR_LIGHT «'vveeeeeennnnnnn 18, 77
BR_ACTOR_MODEL . .vuvenn.... 14, 77, 261
BR_ACTOR_NONE 13—4, 77, 340
12320:40) 0 1 © W 331
BROALPHA () v eveeeeeeeeeeeaaaenns 113
BR_ANGLE_DEG () +evvuvennnnnnn. 104, 122
BR_ANGLE_RAD () vevvurennnnnn.. 104, 122
BR_APPLYMAP_CYLINDER............ 233
BR_APPLYMAP_DISC...uiurennennnn.. 233
BR_APPLYMAP_NONE......0euvenenn.. 233
BR_APPLYMAP_PLANE 233
BR_APPLYMAP_SPHERE 233
BROASIN() weeeeeeeeeeeeeeaaaens. 103
BROASSERT () evvveeeeneeeieeaennnn, 67
BROATANZ () v eveeeeeeeeeeeeaaaenss 103
BR_OATAN2FAST () veuveieneanannnn.. 103
BROBLU ()t et eeeeeeeee e, 113
BR_BMF_NO_ACCESS.....vuvuuenenn.. 273
BR_BOOLEAN ()« e veeteeeaeaaannns. 105
BR_BOUNDS_MAX_ X .uvereeneannnnnn.. 318
BR_BOUNDS_MAX_ Y .uvireeneanannnn.. 318
BR_BOUNDS_MIN_ X.uvtueeneanannnn.. 318
BR_BOUNDS_MIN_ Y .uviureueanannnn.. 318
BR_CAMERA_PARALLEL 109
BR_CAMERA_PERSPECTIVE........... 109
BR_COLOUR_RGB () «vvvveanennnn.. 16, 112
BR_COLOUR_RGBA() eveveerennennnn.. 112
BR_CONST_DIV() «evvurennnnnnn. 331, 333
BR_CONST_MUL () +evvnrennnnnnn. 331, 333
BRLCOS () et vteeeeeeieaeeaeaeans 103
BRODTIV ()t eueeneeeeaaeaaeannns 331-2
BRODIVR() weeueeneeeeeeaeaaannns. 332
BROEOF « ottt eie e 62, 373
BR_EULER_XYX_ R .uurinrnnennnnnnn.. 120

388

BR_EULER_XYX_ S.veurinrinennennnn.. 120
BR_EULER_XYZ Ruveurinrinennennnn.. 120
BR_EULER_XYZ_ S.veuriniinennannnn.. 120
BR_EULER_XZX_ R.'eurinrinennannnn.. 120
BR_EULER_XZX_ S.veurinrinennannnns. 120
BR_EULER_XZY R.veuriniinennannnn.. 120
BR_EULER_XZY_ S.viurinrinennannnn.. 120
BR_EULER_YXY R.veurinrinennannnn.. 120
BR_EULER_YXY S.viuriniinennnnnnn.. 120
BR_EULER_YXZ_ R.teurinrinennannnn.. 120
BR_EULER_YXZ_ S.veurineinennannnn.. 120
BR_EULER_YZX_ R.veurinrenennennnn.. 120
BR_EULER_YZX_ S.veurinrinennannnn.. 120
BR_EULER_YZY Ruveurinrinennannnn.. 120
BR_EULER_YZY S.viurinrinennnnnnn.. 120
BR_EULER_ZXY R.vurinrinennennnn.. 120
BR_EULER_ZXY_ S.veurinrinennennnn.. 120
BR_EULER_ZXZ_R.'eurineinennannnn.. 120
BR_EULER_ZXZ_S.veurineinennannnn.. 120
BR_EULER_ZYX_ R.'eurinrinennennnn.. 120
BR_EULER_ZYX_ S.veurinrinennennnn.. 120
BR_EULER_ZYZ R.veurinienennennnn.. 120
BR_EULER_ZYZ_ S.veurineinennannnn.. 120
BR_FACEF_COPLANAR_O......ccuu.... 124
BR_FACEF_COPLANAR l.............. 124
BR_FACEF_COPLANAR_ 2.............. 124
BR_FAILURE () «veuveninnennanann.. 67-8
BROFALSE « ittt ieee e eananss 105
BROFATAL () et tteieeaeeaeanennss 67-8
BR_FITMAP_ MINUS_ X ..uvireunennnn.. 234
BR_FITMAP_ MINUS_Y .euvirinnennnn.. 234
BR_FITMAP _MINUS_Z ..uvurennennnn.. 234
BR_FITMAP _PLUS_X «'vuvinennennnn.. 234
BR_FITMAP _PLUS_Y svvurinennannnn.. 234
BR_FITMAP _PLUS_Z «'vuvinennennnn.. 234
BROFMAC2 () e e et eeeeeeeaeeaeananns 139
BROFMACS () ettt eeeeeeeeeeaeananns 139
BROFMACA () ettt e eeeeeaeaeens 139
BR_FONTF_PROPORTIONAL 135
BR_FRACTION() v'vvrennnnnn. 139, 141-3
BR_FS_ATTR_HAS_ADVANCE...... 57, 370
BR_FS_ATTR_HAS_BINARY 57, 370
BR_FS_ATTR_HAS_TEXT.......... 57, 370
BR_FS_ATTR_READABLE.......... 57, 370
BR_FS_ATTR_WRITEABLE 57, 370
BR_FS_MODE_BINARY 58, 64, 227, 377
BR_FS_MODE_TEXT...... 58, 62—4, 227, 377

Copyright © 1996 Argonaut Technologies Limited

BR_FS_MODE_UNKNOWNcuovun... 227
BR_FVECTOR2 () tvvveeeeiianannnnnns 141
BR_FVECTOR3 () tvvvretiianannannns 142
BR_FVECTORZA () tvvveeeiiaannnnnns 143
BROGRN () e vteteneeeeeeeaeaaens 112
BROLENGTHZ2 () +vveeiieieiaaanannns 332
BROLENGTH3 () +eveeeiieieiaannannns 332
BROLENGTHA () veveeeieeieiaeaanannns 333
BR_LIGHT_DIRECT...euviurnnannnnnn. 146
BR_LIGHT_POINT .'vtutiianannnnnns 146
BR_LIGHT_SPOT +vvveeeeieiaaanannns 146
BR_LIGHT_TYPE «\tveitiiaannannns 146
BROLIGHT_VIEW «vvvreriianannnnnns 146
BROMACZ () eeeeeeeee e eeeeaaaens 332
BR_MAC2DIV () wveeneaeeeiaannannns 332
BROMACS3 () eeeeeeeee e eeeeaaaens 333
BR_MAC3DIV () wereeeeeeiiaannannns 333
BROMACA () eeeeeeee e e 333
BR_MACADIV () weveeeeieeeiaaanannns 333
BR_MAPU_ALL..'tutieeieieiaaanannns 281
BR_MATF_ALWAYS_VISIBLE 153
BR_MATF_BLEND ..ovveenennnn. 153, 157
BR_MATF_DECAL +vevveeeieiaannannns 153
BR_MATF_DITHER....euviuranannnannn. 153
BR_MATF_ENVIRONMENT I 85, 153
BR_MATF_ENVIRONMENT L 85, 153
BR_MATF_FORCE_Z_0 «uvvuranannnnnn. 154
BR_MATF_LIGHT ..oovvun.... 153, 155, 156
BR_MATF_PERSPECTIVE.......ov.n... 153
BR_MATF_PRELIT.......... 17, 153, 155-6
BR_MATF_SMOOTH .. evtetieiaaannnn 153
BR_MATF_TWO_SIDED «.ovuveennnnnn. 154
BROMATU_ALL..tutieeieieiaaanannns 160
BR_MATU_COLOURMAPcuvnn... 160
BR_MATU_LIGHTING....oeuruuennnnnn. 160
BR_MATU_MAP_TRANSFORM 160
BR_MATU_RENDERINGuvuvvennnnn.. 160
BR_MAX_FILE_MAGICS 60, 375
BR_MAX_LIGHTS +vvvvieeieiaannnnns 149
BR_MEMORY_APPLICATION 55, 324-5
BR_MEMORY_CAMERA.......ouueuennnn. 111
BR_MEMORY_LIGHT.....ovuvuuennnnnn. 148
BR_MEMORY_MAX «\vvuveeennnnnnnnn. 324-5
BR_MEMORY_STRING.......ovuvuunnn... 49
BR_MODF_CUSTOM .. eetteeaennnnn 229
BR_MODF_DONT_WELD . .veuvuuennnnnn. 229
BR_MODF_GENERATE_TAGSuv..... 229

Copyright © 1996 Argonaut Technologies Limited

Macro Index

BR_MODF_KEEP_ORIGINALI4, 124, 229, 239,
367

BR_MODF_QUICK_UPDATE 229
BR_MODU_ALL ..vtiiiiiiiiiiiiieeennn 237
BR_MODU_BOUNDING_BOX 230
BR_MODU_FACES.....ciiiiiiii.. 237
BR_MODU_MATERIALSiiiinennn.n 237
BR_MODU_RADIUS....iiiiiiiiiinnnnn 230
BR_MODU_VERTICESciivaan.. 237
BR MUL() coiiiiii i i i i 331
BR_MULDIV() civiiiiiiiiiiiiiiinnn. 332
BR_ONE_LS.. it 133
BR_ONE_LSFE....viiiiiiiiiiiiiaen 133
BR_ONE_LU..uuitiiiiiiiiiiiiiaen 133
BR_ONE_LUF. ...ttt 133
BR_ONE_SS.. it 133
BR_ONE_SSF....viiiiiiiiiiiiiiia e 133
BR_ONE_SU.. it 133
BR_ONE_SUF. ...ttt 133
BR_ORDER_TABLE_CENTRE 261
BR_ORDER_TABLE_CONVEX 261
BR_ORDER_TABLE_FAR............... 261

BR_ORDER_TABLE_INIT_BOUNDS260-2, 265

BR_ORDER_TABLE_LEAVE_BOUNDS... 261,
265-6

BR_ORDER_TABLE_NEAR.............. 261

BR_ORDER_TABLE_NEW_BOUNDS 88, 260-1,
265

BR_PMAF_INVERTED ...ovvueenrnnn... 285
BR_PMAF_NORMAL......o0vuuenennnn.. 285
BR_PMMATCH_DEPTH_16.............. 286
BR_PMMATCH_OFFSCREEN 44, 286
BR_PMT_DEPTH 16 «evvvrenennnnnn.. 272
BR_PMT_DEPTH 32 +ivvirianannnnnn.. 272
BR_PMT_INDEX_ l....eovuinuenennnn.. 272
BR_PMT_INDEX_ 2....0evuinnennnnnn.. 272
BR_PMT_INDEX_ 4.....ovuinnennnnnn.. 272
BR_PMT_INDEX_ 8............ 16, 157, 272
BR_PMT_RGB_555.....cuuiurnn... 157, 272
BR_PMT_RGB_565...cueirinnennnnnn.. 272
BR_PMT_RGB_888.....ccvvuuennnn.. 272-3
BR_PMT_RGBA_8888ovvun.n.. 272-3
BR_PMT_RGBX_888couvnn.n. 157, 272
BROPOW () v eeeneee e eeeeeeeaenn, 332
BR_PRIMITIVE LINE......ccuvun.... 305
BR_PRIMITIVE_POINT......cuvun.... 305
BR_PRIMITIVE_ TRIANGLE 305

Macro Index

BR ORCP () eetiiieeeiiiineeaneennnnns 331
BR RED ()eetmiieeiiiiinieennnnnnnns 112
BR_RLENGTH2 () +vvevenennnnnenennnn 332
BR_RLENGTH3 () +vvevennnnnnneneennn 332
BR_RLENGTH4 () vvvriirnnnnnnnnnnnns 333
BR_RSTYLE_BOUNDING_EDGES........ 79
BR_RSTYLE_BOUNDING_FACES........ 79
BR_RSTYLE_BOUNDING_POINTS.... 20, 79
BR_RSTYLE_DEFAULTcovvun 79, 248
BR_RSTYLE_EDGES........covvun. 79, 123
BR_RSTYLE_FACES .. iiiiiiiinennnn. 79
BR_RSTYLE_NONE 79, 248-50, 318
BR_RSTYLE_POINTS.....cciiiiiiennnn. 79
BR_SCALAR () cevvverennnnnnn 316, 333, 361
BR_SCALAR_EPSIILONcuun... 140, 333
BR_SCALAR MAX ittt iineinneennnnn 333
BR_SCALAR _MIN ..ttt iiiiiineennnnn 333
BROSIN ()t etteeeeeeiienneaaeennnnns 103
BR_SORT_AVERAGEiviiiinnennn.. 261
BR_SORT_FIRST_VERTEX............ 261
BR_SORT_MAX . it iiiiinneaneennnnn 261
BR_SORT_MIN...iiiiiiiinernneennnnn 261
BROSORZ2 () teeerereneennnnnnenennns 332
BROSOR3 () teeeererenennnnnnneneenns 332
BROSORZ () tieeeeiiiiieeeennnnnenns 333
BROSORT () teeeeeeiiiieeeennennenns 332
BROSUB () eetueeeeneeeeennnannnnnnnns 331
BR_TABU _ALL..ituittiiieinneroneennnnn 283
BR_TRACE () teveeerreeennnnnnnnnnnn 67-8
BR_TRACEOD () teveerennennneeeennnnnn 67
BR_TRACEG () tvveerennnnnnneeeennnnns 67
BR_TRANSFORM_EULER 33940
BR_TRANSFORM_IDENTITY........... 339
BR_TRANSFORM_LOOK_UP............ 339
BR_TRANSFORM_MATRIX34........ 82, 339
BR_TRANSFORM_MATRIX34_LP... 339, 341
BR_TRANSFORM_QUAT ...iiiiveennnn. 339
BR_TRANSFORM_TRANSLATION....... 339
BR_TRUE ...ttt it iiiieannnn 105
BR_VECTORZ () eetetieeeennnnnenennnn 184
BR_VECTOR3 () ettt rneenennnnnenennnn 208
BR VECTORZ () eeeerritnnnnnennnnnns 224
BR VERIFY () eveeeiriiiiieennnnennnns 67
BR_WARNING () eeeereeeennnnnennnnn 67, 68
BrAngleToDegree () ...ceeeeeeeennn. 104
BrAngleToRadian()ceeveeennn. 104
BrAngleToScalar()co..... 104, 334

390

BrDegreeToAngle () «vveeeeneenenn.. 104
BrFixedToFloat () «vvevrvnenenennnn 133
BrFEixedToINt () ceeeeeeenenenenennns 133
BrFixedToScalar() «voeeeeueenennn. 334
BrFloatToFixed () «.vvevevnenenennnn 133
BrFloatToScalar() «veveeeunenennn. 334
BrFractionToScalar()c...... 334
BrHEONE () teeeeee it ieeeiieeeeeenns 70
BrHEONL () teeeeee it iieeeiieeeennnnn 70
BrHEONS () teeeeei it iieiieeeeeennnn 70
BrintToFixed () «veveeeenenenenennnn 133
BrIntToScalar ().eee e e eeenenenens 333
BENEOHE () tieeee it ieeeiieeeeennnn 70
BENEOHL () teeeeeie it ieeeiieeeeennn 70
BrNEOHS () teveeei it ieeeennnn 70
BrRadianToAngle () «voveeeneenenn.. 104
BrScalarToAngle() ...cevun... 104, 334
BrScalarToFixed () «vvvevennenenn.. 334
BrScalarToFloat () «vvvevennenenn.. 334
BrScalarToFraction() 334
BrScalarToInt ()..eeeeeenennenennn. 334
BrScalarToUFraction()coov... 334
BrUFractionToScalar()c...... 334
D

DEBUG .ttt ittt tetetnnetaneenns 67
O

OSC_ACCEPT...civiiiiiinnnnnn 249, 250-1
OSC_PARTIAL...vviiieinnnnns 249, 250-1
OSC_REJECT...ciiiiiiiinnnnn.. 248, 251
OUTCODE_BOTTOM. . viviierinneennnn 252-3
OUTCODE_HITHER......cvviivevnnn 2523
OUTCODE_LEFT .ottt iiii i i 252-3
OUTCODE_RIGHT ...viviiiiiinienn. 252-3
OUTCODE_TOP. .ttt iieiineennnn 252-3
OUTCODE_YON. . ittt iieiineiennnn 252-3
P

= 104
%

VERIFY () viitiiieeii it iieaeanannnnn 67

Copyright © 1996 Argonaut Technologies Limited

Macro Index

3 9 1 Copyright © 1996 Argonaut Technologies Limited

Function In-
dex

BrActorAdd () «uovevineiinninnnennnnn 80
BrActorAllocate() veeeeerennennnn.. 89
BrACtOrENUM () vevrrrenneneennnnnnnn. 91
BrActorFileCount () «vevvevnnnennn.. 94
BrACtOrFree () cueeeeeeeeeeennennnnn. 90
BrAcCtorLoad () veeeeeeeeneeenenenennn 95
BrActorLoadMany () «eeeeeveeenennnn. 97
BrActorRelink () .eeuveeieneennnnnnn.. 81
BrACtOorRemMoOvVe () cveeeirnneennnennnnn 81
BrAcCtorSave () cveeeeeienneennnennnnn 94
BrActorSaveMany () «oeeeeeeeeeneenn. 96
BrActorSearch () ..oeeeeiinnnennnn. 92
BrActorSearchMany () «..coeeeeenenn.. 93
BrActorToActorMatrix34()......... 82
BrActorToBounds () voeeeeeennnennnnn 82
BrActorToScreenMatrix4 ()......... 83
BrAllocatorSet ()eeeeeeeneenennnnn. 101
BrBegin() ceveeeeneeneeneeenenenennn 10
BrBlocCKCOPY () vevrrnennenrnnennnnnns 53
BrBloCKFIll () vuvrrrenninnnnnnnnnn. 53
BrBoundsToMatrix34()..eeeeuneun.. 107
BrClipPlaneDisable()..eeeeeenenn.. 87
BrClipPlaneEnable()ccovvenunn.. 86
BrDiagHandlerSet () «veeveenennenn. 117
BrENA () e tee it e it e iteieaaeaannn 11
BrEnvironmentSet ()uveirennnn.. 85
BrEulerToMatrix34 () ..cvveeennennn. 121
BrEulerToMatrix4 () «veeeeennnennn. 122
BrEulerToQuat () .veeeeenneennnennn. 121
BrFEileAdvance () .veeeeeneeennnennnnn 62
BrFileAttributes () «vovvevnennnnn.. 57
BrFEileCloSe () veveeirnneneennennnnn. 63
BrEIileREOF () eetit it iiiieiennaannnn 63
BrFileGetChar () ..oeeeiiinnnennnn. 62
BrFEileGetLine () .veeeeenieennnennnnn 61
BrFileOpenRead ().eeeeeeneeneenennn. 60
BrFileOpenWrite () vveeeveenenenen.. 57
BrFEilePrintf () «vveeinnnnennnn.. 59
BrEilePutChar () .veeeeereeenenennnn. 59
BrEilePutLine () .uoeeeeeeeeenenennnn. 59
BrFileRead () veeevrrrnennennnnnnnn. 61
BrFilesystemSet () oo, 128
BrEFileWrite () vvveveneenenenenenennns 58

Copyright © 1996 Argonaut Technologies Limited

BrEmtASCLOAd () eeernernineinnennnnn 244
BrEmtBMPLOAA () e eevienineinnennnnn 295
BrEmtGIFLoAd () .eeeeeenennnnnnnnnn 295
BrEmtIFFLOAd () eeeeeneeenneennnnnn. 296
BrEmENFFLoAd (). eereeennninnnnnnnn 245
BrFmtScriptMaterialLoad() 167
BrFmtScriptMaterialLoadMany () . 168
BrEmtTGALOAA () vt neeeeneeeenaennn. 296
BrLightDisable() «voveiiirinennnnn.. 86
BrLightEnable () «.vieiiinininnnnn.. 85
BrMapAdd () e eeee e e enenennnnannnnns 280
BrMapAddMany () ..eeeeeeeinnnnnnnnn. 281
BrMapCount () «eeveeenennenennennn. 287
BrMapENUM () «ovuenenenenenenennnnnn 288
BrMapFind () «eveveinininiinnnnnn. 288
BrMapFindFailedLoad () «vevvvenn.. 290
BrMapFindHook () ...cvvviiennnnnnn. 289
BrMapFindMany () «.c.ceeeevenenennn. 289
BrMapREMOVE () cvvernenenrnnnnnnnnnn 281
BrMapRemoveMany () ««.eueeeeennen... 282
BrMapUpdate () cvveeeeeenrnnnnnnnnnn 281
BrMaterialAdd () ..oveerinrnnennnn. 159
BrMaterialAddMany ()...eeeeeennnn. 159
BrMaterialAllocate() «voeeenenn... 161
BrMaterialCount () «o.oeveueennnnn.. 162
BrMaterialEnum() ...oeeeueennnnn.. 162
BrMaterialFileCount () «vevvuvunn.. 165
BrMaterialFind () ...ovviiennnnnnn. 163
BrMaterialFindFailedLoad () 165
BrMaterialFindHook () «veeeununn.. 164
BrMaterialFindMany () «..oeeuenen.n. 163
BrMaterialFree () «voeeeeieennnnnn. 162
BrMateriallLoad () «voveeeneennnnn.. 166
BrMaterialLoadMany () «..eeeuenennn. 166
BrMaterialRemove ()coeeeennn... 160
BrMaterialRemoveMany () 161
BrMaterialSave () «veeeeeeennennnn. 168
BrMaterialSaveMany () «...ceeeeeen.. 168
BrMaterialUpdate () ..coeeeeeennnnn. 160
BrMatrix23ApplyP () eeeeeeenenn... 174
BrMatrix23ApplyV () ceeeereenenn... 175
BrMatrix23CopPy () ceeeeeeneneannnnn 183
BrMatrix23Identity () «.coevuennn.. 185
BrMatrix23Inverse ()...eeeeeeen.n. 173
BrMatrix23LPInverse () «voeeeen... 174
BrMatrix23LPNormalise()......... 184
BrMatrix23Mul () «oeeerrnnrnnennnn. 173
BrMatrix23PoSt () cvveeennnennnnnn. 180
BrMatrix23PostRotate().......... 183

Function Index

BrMatrix23PostScale()....cvun... 181
BrMatrix23PostShearX () 182
BrMatrix23PostShearY () 182
BrMatrix23PostTranslate()...... 181
BrMatrix23Pre() «iveeeeeieeeeennnn. 177
BrMatrix23PreRotate ()........... 180
BrMatrix23PreScale()....covun... 178
BrMatrix23PreShearX()....cevuu... 178
BrMatrix23PreShearY()....cuuu... 179
BrMatrix23PreTranslate () 177
BrMatrix23Rotate () ..ooveennnn... 187
BrMatrix23Scale() ...vevivinnnnn.. 186
BrMatrix23ShearX () ...covveuevnn... 186
BrMatrix23ShearY () «veeeeeeennn.. 187
BrMatrix23TAPPlyP () cvveeenenn.n. 176
BrMatrix23TAPPlyV () cvveeeneennn. 176
BrMatrix23Translate()..eeeen.... 185
BrMatrix34Apply () ..c.oovoviiina... 191
BrMatrix34RApplyP () «ovevevennnn.. 192
BrMatrix34Rpply V() «eveeenennnn.. 193
BrMatrix34COoPy () eeeeeneeneneennn. 207
BrMatrix34Copy4 () «evevererennnn. 207
BrMatrix34Identity () .coveeennn.. 209
BrMatrix34Inverse () «voeeeeeen... 190
BrMatrix34LPInverse ()...c.eeen... 191
BrMatrix34LPNormalise () 208
BrMatrix34Mul () cvveeenninnnennnn 189
BrMatrix34PoSt (). veeeeeneennnnnn. 200
BrMatrix34PostRotate () 203
BrMatrix34PostRotateX () 203
BrMatrix34PostRotateY () 203
BrMatrix34PostRotateZ () 204
BrMatrix34PostScale().eeeenn.... 201
BrMatrix34PostShearX () ...c...... 201
BrMatrix34PostShearY () 202
BrMatrix34PostShearZ () 202
BrMatrix34PostTransform()...... 204
BrMatrix34PostTranslate()...... 200
BrMatrix34Pre () «vveeeeeeeenennnn. 195
BrMatrix34PreRotate()........... 198
BrMatrix34PreRotateX () 198
BrMatrix34PreRotateY () 199
BrMatrix34PreRotateZ () 199
BrMatrix34PreScale() .coeeeunn... 196
BrMatrix34PreShearX ()...eeeeu.... 196
BrMatrix34PreShearY ()....cuu.... 197
BrMatrix34PreShearZ ()....ceeu.o... 197
BrMatrix34PreTransform() 199
BrMatrix34PreTranslate() 195

392

BrMatrix34RollingBall()....ceun.. 69
BrMatrix34Rotate () ..ovveveennnnn. 214
BrMatrix34RotateX () ..coveeuuunon.. 212
BrMatrix34RotateY () ..oveeuunnnn.. 213
BrMatrix34RotateZ () ..eveeunnnn.. 213
BrMatrix34Scale() «vueeeeennnnnnn. 210
BrMatrix34ShearX () «veeeeeeeenenn. 210
BrMatrix34ShearY () «veeeeeeeenenn. 211
BrMatrix34ShearZ () cvveeeenennnnn. 212
BrMatrix34TRAPPLly () ceveeeenenenans 193
BrMatrix34TRApPlyP () e, 194
BrMatrix34TAPPlyV () e eeeeieenenn.. 194
BrMatrix34ToEuler()...coeeeennen.. 205
BrMatrix34ToQuat () cvveeeenennnnn. 205
BrMatrix34ToTransform()......... 206
BrMatrix34Translate() .c.covuenn.. 209
BrMatrix4Adjoint () ..oovvvnininn, 221
BrMatrix4Apply () coeevenininnann.. 217
BrMatrix4ApplyP () ceveernnennnenn. 217
BrMatrix4RApplyV () «cueeveneenenn.. 218
BrMatrix4Copy () eeeeneeneneenennnn 223
BrMatrix4Copy34 () «ceueenennenenn.. 224
BrMatrix4Determinant () 222
BrMatrix4Identity ()..eeeueenen... 225
BrMatrix4Inverse () «veeeeeenneenn. 216
BrMatrix4Mul () ceeeeeeennnnennnnnnn 216
BrMatrix4Perspective ()c..n. 226
BrMatrix4Pre34 () cueeeeneennnnnnn. 220
BrMatrix4PreTransform()......... 221
BrMatrix4Scale () «vieeveienennnnn. 225
BrMatrix4TApply () «oovevnnnnnennn. 219
BrMatrix4TAPPlyP () covevennenenn.. 219
BrMatrix4TApPlyV () coveeenenenn.. 220
BrMatrix4ToEuler () «voeeeeneenenn. 222
BrMatrix4ToQuat () «oveverennnnnnn. 223
BrMemAllocate ().eeeeeneenennennennn 55
BrMemCalloC () veeererernrnnnnnnennnn 55
BIMemMEree () eeeeeeeeeeeenennnennnn 56
BrMemInquire () coeeeee e eenennnns 55
BrMemStrDUP () «veeerrreneenennennnns 56
BrModelAdd () «oveeeeiineinneneenns 235
BrModelAddMany () «.eevevninvnennn 236
BrModelAllocate () vveeeerenennenn. 239
BrModelApplyMap () «ceeeeeneenenn.. 233
BrModelCount () «ovee e ennennenennn 239
BrMOdelENUM () v vrverennenneneenennn 240
BrModelFileCount () «vveerenennenn. 243
BrModelFind () «veeee e enneneenennn 240
BrModelFindFailedLoad () 242

Copyright © 1996 Argonaut Technologies Limited

Function Index

BrModelFindHook () vvveviennennnnn. 241 BrPOOlIFree () vvveernennnennnnnnnn 301
BrModelFindMany () «..ooeevenennnn.. 241 BrouatInvert () ..eeeeeeneenennen... 313
BrModelFitMap () evevevnvienenennns 233 BrQuatMul () «ovvininiiiiiinnnnnnn. 312
BrModelFree () vueeeeeneneenennnnns 239 BrQuatNormalise () «vveeeeennennnn. 315
BrModelLoad () «vevevinneninnennnn.. 243 BrouatSlerp() «eveeeenennnennennn. 313
BrModelLoadMany () «eeeeeeeneenennn 244 BrQuatToEuler () «.oeeeeeneennnnnn. 314
BrModelPick2D () . veeeirnneennnnnnn. 231 BrQuatToMatrix34 () .ceeeieeennnn.. 314
BrModelRemoOvVe () veeeeereneenennennn 237 BrQuatToMatrix4 () «veevenennennnn. 315
BrModelRemoveMany () «veeeeeeenenn. 238 BrRESAAA () et enii it eiiieeeannenn 49
BrModelSave () «veeeeeienneennnennn. 245 BrResAllocate () «vveeeinnnennnnnnn. 48
BrModelSaveMany () «oeeeeeeneenennn 246 BrResChildEnum() «v.oveeineennnnnnn. 50
BrModelUpdate () ..covevenennennnn.. 237 BrRESCLAsSS () vvevemnenennnnenaennnnn 49
BrOnScreenCheck () «.vvvievnnnnan.. 250 BrResClassAdd () «vvvevirnnrnnnnnnn. 324
BrOriginToScreenXY ()..c..eveuneen.. 251 BrResClassAddMany ()....ceeuuen... 325
BrOriginToScreenXYZO () «..ovuvnnn. 252 BrResClassCount () «vovvivenunnnnn. 328
BrPixelmapAllocate()..cevuivnvnnn. 284 BrResClassENuUm() «oeeevenenennnnnn 329
BrPixelmapAllocateSub () 285 BrResClassFind () «.eeeivenennnn... 327
BrPixelmapChannels().......covunn. 287 BrResClassFindHook () ..covvvnunnn. 328
BrPixelmapClone () «ooeeeeenennenn. 286 BrResClassFindMany () «oueeeuennnn. 327
BrPixelmapCopy ()eeeee e enenenenann 279 BrResClassRemove () ..oveeeenennnn. 325
BrPixelmapDirtyRectangleCopy () .42 BrResClassRemoveMany () 325
BrPixelmapDirtyRectangleFill () .42 BrRESFIree () vuvuiriiiiinnnnennnnnnnn 51
BrPixelmapDoubleBuffer()......... 44 BrRESREMOVE () v ieriiiiiineennnnnnnn 51
BrPixelmapFileCount ()couen.. 294 BrRESS1ZE () teviiiiiiiieinnnnnnnn 50
BrPixelmapFill ().ceeuveniunennnn.. 275 BrRESSErDUP () ¢ evevniennieaennnnn 49
BrPixelmapFree ()...eve i nennn. 286 BrSceneModelLight ()...cvuvuinnn.. 234
BrPixelmapLine ()....coveuvuiennnn.. 275 BrScenePick2D () «.oveviiiininnenanns 84
BrPixelmapLoad ().ceeuveniunennnn.. 294 BrScenePick3D() «.oveviiiininnennnnn 83
BrPixelmapLoadMany ()......cuven... 294 BrScreenXYzZToCamera () «..cuovennnn. 24
BrPixelmapMatch()c...... 285 BrScreenzZToCamera ()...eeeeueennnns 24
BrPixelmapPixelGet ().v.uvevenen.n. 276 BrTableAdd () «veeeineninnnennnn. 282
BrPixelmapPixelSet ()...vevvuen.n. 276 BrTableAddMany () «.eeeeeenenennn.. 282
BrPixelmapPixelSize () .v.vvuvennn. 287 BrTableCount () .ve e enennennennnn. 290
BrPixelmapRectangleCopy () 280 BrTableEnum() «oveeeeeenennenannnn. 291
BrPixelmapRectangleFill() 275 BrTableFind () «veeeuennnnnennnn. 291
BrPixelmapSave ().eeeee e ieenenenans 296 BrTableFindFailedLoad ()......... 293
BrPixelmapSaveMany ()....coveenen. 297 BrTableFindHook () ..ovviveiinnnnn. 292
BrPixelmapText ().ceeeeenenennnn.. 276 BrTableFindMany () «.coeeveeennen... 292
BrPixelmapTextF ()covuiennan.. 277 BrTableRemove () ...evvuiiinennen... 283
BrPixelmapTextHeight () 279 BrTableRemoveMany ()....coeeeeenen. 283
BrPixelmapTextWidth () 278 BrTableUpdate () ...covvvinennian... 283
BrPointToScreenXY () «oeeeeeennnnn. 251 BrTransformToMatrix34()......... 342
BrPointToScreenXYMany () «..c...... 251 BrTransformToTransform() 342
BrPointToScreenXYZO () v.ouveveeen.. 253 BrVector2Accumulate () ...oovvvn.. 349
BrPointToScreenXYZOMany () 253 BrVector2Add () .eeeeee e ennnnnn. 349
BrPoolAllocate ().eeeeenneennnennn. 300 Brvector2Copy () «oeeeeennennennnns 352
BrPoolBlockAllocate() «.eeveuenn.. 299 Brvector2DOt () eeeeen e ennnnnn. 351
BrPoolBlockFree() .coviieennnnnn.. 299 BrVector2InvScale (). eeeeeennn... 350
BrPOOlEMPEY () vvrvreennnnrnnennnnn. 300 BrVector2Length () «oovvvveennnn... 351

Copyright © 1996 Argonaut Technologies Limited 3 9 3

Function Index

BrVector2LengthSquared () 351
BrVector2Negate () «.veeveeenennnn. 348
BrVector2Normalise()...cvevun... 352
BrVector2Scale () veeeeeeeeeennnn. 350
Brvector2Set () vveeeeeieenennennnnn 353
BrVector2SetFloat () «ovvvenvnn... 353
BrVector2SetInt ()cvvvenvnn... 354
BrVector2Sub () «voviiiiinnnna... 349
BrVector3Accumulate ()........... 356
BrVector3Add () «veeererinrennnnnn. 356
Brvector3COoPY () cveereerneenennnnn 361
BrvVector3CroSs () .eeeeeeeeeeennnnn 358
BrvVector3DOt () vveeeernennennnnnnn 358
BrVector3InvScale() cvieeeeennn.. 358
BrVector3Length()covvuven... 359
BrVector3LengthSquared () 359
BrVector3Negate () «..ovveevnenn.n. 356
BrVector3Normalise()...cvvvun... 360
BrVector3NormaliseLP () 360
BrVector3NormaliseQuick()...... 360
BrVector3Scale () .ueeeeeneennnnnn. 357
BrVector3Set () vveeeiiennnnnnnn. 362
BrVector3SetFloat () «veveennnn... 362
BrVector3SetInt () ...veeeeennn... 363
Brvector3Sub() cveveeinnnnnennnn. 357
Brvector4Copy () veeeeenernenennnn. 365
BrvVectord4Dot () vueeeernennenennnnn 364
BriWWriteModeSet () e i enenennnnnn 64
BrZbBegin () cveeevivininnnnenens 28
BrZbDepthToScreenZ () ...oeeeueennn. 30
BrZbENnd () cueeiieiiiiiiiiieannann 40
BrZbModelRender ()eveevennn. 249
BrZbRenderBoundsCallbackSet ().. 38
BrZbSceneRender ()eeeeennen.. 34
BrZbSceneRenderAdd () ...ccvvuunn.. 36
BrZbSceneRenderBegin () 35
BrZzbSceneRenderEnd ()ccvuvnnn. 37
BrZbScreenZToDepth ()cvvuvnnn. 31
BrZsActorOrderTableGet () 88
BrZsActorOrderTableSet () 87
BrZsBegin() cveeeveviininnnnenens 28
BrZsDepthToScreenZ ()c.covuen. 32
BrZsSENd () sueeenriiniieennnnnnnn 40
BrZsModelRender () .e.eeeeeeeennn.. 250
BrZsOrderTableAllocate() 265
BrZsOrderTableClear ().e.eeeen.... 264
BrZsOrderTableFree()....covuu... 266

BrZsOrderTablePrimaryDisable () 264
BrzsOrderTablePrimaryEnable (). 263

394

BrZsOrderTablePrimitiveInsert () 262
BrZsPrimitiveBucketSelect ()....309

BrZsPrimitiveCallbackSet () 39
BrZsRenderBoundsCallbackSet () ..39
BrZsSceneRender () «veeeeeenennennnn 35
BrZsSceneRenderAdd ()coevvenn. 37
BrZsSceneRenderBegin ()vvn.. 36
BrZsSceneRenderEnd () 38
BrZsScreenZToDepth() 33
CBEFNACELOXENUM ()« e eeennnennnnennnn 99
CBFnDiagFailure () «.coeeeeeneenenn. 114
CBFnDiagWarning () «voeeeeeeenenn.. 115
CBFNFileAdvance () «veeeeeeeennenn. 369
CBFnFileAttributes ()ovuvn... 370
CBFNF11eCloSe () eeerenenenenennnnns 371
CBEFNFI11€EOF () vvvrriiinnennnnnnnnn. 372
CBFnFileGetChr () «vvevrivnrnennnnnn 373
CBFnFileGetLine () vvevevernennnnnn 374
CBFnFileOpenRead () cvvveeenenennnn 375
CBFnFileOpenWrite ()..oceeeenen.n. 377
CBFnFilePutChr () ...covieiinnnan.. 378
CBFnFilePutLine () «coeeeeeennnenn. 379
CBEFnFileRead () «vvevrennennnnnnn. 380
CBEnFileWrite (). eeeeeenneennnnnnn. 381
CBFNMAapPENUM () «vvvreenennennnnennnn 150
CBFNMapFind () «veeveeenernennnnennnn 151
CBFnMaterialEnum() «veeeeenenennnn 170
CBFnMaterialFind () .vveveenennnnn. 171
CBFnMemAllocate () voveeneennnnnnn. 382
CBENMEMELEE () vvvreninneennennnnns 384
CBEFnMemInquire () «uv.eeeeeenenennnn 385
CBFNModelCustom() «veeeenenennnnnn 247
CBFNMOAELlENUM () eereerenneneenennn 255
CBFNModelFind () .o e inenennnnnn 256
CBFNModelPick2D() vvuvereennnnnnn.. 257
CBEFNMOdEeTesSt () vererenenenenennnnnn 227
CBFNPICK2D () vevieiieiieeenannnn 267
CBENPICK3D () vviiiiiiiiieinnnnnnnn 269
CBFNPrimitive () v e rinenennnnnn 307
CBFnRenderBounds () cveeeeenenennnn 317
CBFnResClassEnum() «vveuveennnnnnn. 320
CBFnResClassFind () «oveveennnnnnn. 321
CBFNRESENUM () v vvveinrennennnnenns 322
CBFnResourceFree () «cveeeeennnnnn. 330
CBEFNTableEnum () ..eeeeeeneeennnennn 336
CBFNTableFind () ..o e e eneenenn. 337

Copyright © 1996 Argonaut Technologies Limited

General In-
dex

0—9
2D
Affine matrix 172
Model pick 231
Pick call-back 267
32 bit
Colour representation 112
3D
Affine matrix 188, 215
Manipulator 69
Pick call-back 269
3D Studio
Importing 244

A
Absolute
Fixed 130
Scalar 332
‘Access & Maintenance’
Structure heading — see Heading
Accumulate
Vector 356
Accumulating
Transforms 82, 83
Actor 12
2D pick 84
Add 80
Allocate 89
Bounding box 82, 106
Bounds 20, 77, 82
Bounds correct 20, 77
Camera 18, 77
Change parent 81
Children 75
Clip plane 21, 77, 86—7
Co-ordinate space 22
Count in file 94
Depth 76
Disable
Clip plane 87
Light 86
Dummy 13, 77
Enable

Copyright © 1996 Argonaut Technologies Limited

Clip plane 86
Light 85
Enumerate 91, 99
Environment material 153
Free 90
Function 76, 85
Functions 13
Hierarchical relationship 12, 75, 80
Identifier 80
Light 17, 77, 85—6
Load 95, 97
Material 78
Model 14, 77-8
Move 81
Next sibling 75
None 13, 77
Parent 75
Positional relationship 12, 76, 82
Previous sibling 75
Reference 13, 77
Relink 81
Remove 81
Rendering style 79
Root 13
Save 94, 96
Search 92
Set environment 85
Structure 74
to Actor 82
to Screen matrix 83
Transform 76, 82
Type 76—7
Type data 77
User data 80
Add
Actor 80
Child actor 80
Material 159
Model to registry 235—6
Resource 49
Resource class 324—5
Scalar 331
Scene to rendering 36, 37
Shade table to registry 282
Texture map to registry 280—1
Vector 349, 356
Adjoint
Matrix 221

395

General Index

Advance

File 62

Call-back 128, 369

Affine

2D matrix 172

3D matrix 188, 215
Allocate

Actor 89

Material 161

Memory 55

Call-back 100, 382

Model 239

Order table 265

Pixel map 284

Pool 300

Pool block 299

Resource 48
Allocator

Identifier 101

Set 101

Structure 100
Alpha 72

Channel 287

Colour component 113
Always visible

Texture 153
Ambient

Lighting 15, 155
Angle 45

Integral type 103

of Spot light 147

see Euler angle set
Animating

Textures 158
Application memory class 55
Apply

Matrix to point 174, 176, 191—4, 217, 219

Matrix to vector 175—6, 193—4, 218, 220

Texture map 158, 233
Arccosine

Fixed 132

Scalar 103
Arcsine

Fixed 132

Scalar 103
Arctangent

Fixed 132

Scalar 103

396

Arguments

Function heading — see Heading
Arithmetic

Structure heading — see Heading
ASCIT

Fonts 135
Aspect 19

Camera 109
‘Copy/Assign’

Structure heading — see Heading
Attach

Actor 80
Attenuation

Light 146
Attributes

Filing system 57

Call-back 126, 370

B
Back face culling 153
Base

Material index 156
Begin

Initialising the library 10
Bilinear

Interpolation of texture 153
Binary

Mode 57, 64, 227
Bit map

Font 136
Blanking period 44
Blend table

Material 153, 157

see Material, Shade table
Block

Pool block size 299
Blue

Colour component 113
BMP

Import 295
Boolean

Integral type 105
Bounding box

Actor 82, 106

Check on screen 250

Intersection 83

Model 82, 106, 230

Pick 83

Rendering style

Copyright © 1996 Argonaut Technologies Limited

Edges 79
Faces 79
Points 79
Bounding radius 230
Bounds
Actor 20, 77, 82
of Order table 260
Render call-back 38—9, 317
Structure 106
Bounds correct
Actor 20, 77
BRender
Initialising the library 10
Overview 2
Termination 10—11
What does it do? 3
What is it? 2
Why is it so good? 3
Bucket
of Order table 304
Bucket sort
Primitives 262
see Z sort
Buffer
Double buffering 43
see Pixel map

C
C Types 45
Calculating
Actor bounding box 82
Call-back
2D pick 267
3D pick 269
Custom model 229, 247
Enumerate
Actor 99
Resource 322
Resource class 320
Texture map 150
Failure diagnostic 114, 116
File
Advance 128, 369
Close 127, 371
End of file 127, 372
Get character 127, 373
Get line 128, 374
Open 127, 375, 377
Put character 127, 378

Copyright © 1996 Argonaut Technologies Limited

General Index

Put line 128, 379
Read block 127, 380
Write block 127, 381
Filing system
Attributes 126, 370
Find
Resource class 321
Texture map 151
Inquire
Memory 385
Material
Enumerate 170
Find 171
Memory
Allocate 100, 382
Deallocate 100
Free 384
Inquire 100
Mode test 227
Model
Enumerate 255
Find 256
Pick 257
Primitive 39, 307
Render bounds 38—9, 317
Resource
Free 324, 330
Sample material find hook 165
Set material find hook 164
Set model find hook 241
Set resource class find hook 328
Set shade table find call-back 292
Set texture map find hook 289
Shade table
Enumerate 336
Find 337
Warning diagnostic 115—16

“The Call-back Function’

Structure heading — see Heading

calloc() — see Memory allocate
Camera 19

Actor 18, 77

Aspect 109

Co-ordinate space 22

Default 111

Field of view 109

Height of parallel projection 110
Identifier 110

Perspective matrix 226

397

General Index

Structure 108

Type 109

User data 110

Width of parallel projection 110
Candlelight

Point light 146
Change

Actor parent 81
Channels

of Pixel map 287
Character

Font 135

Font bit maps 136

Get from file 62

Put to file 59

Size 135
Check

Bounding box on screen 250
Child

Add actor 80

Remove actor 81
Children

Actor 75
Chunk

Pool chunk size 299
Class

see Memory class

see Resource class
Clear

Allocate memory

Order table 264
Clip plane

Actor 21, 77, 86—7

Disable 87

Distance of hither 109

Distance of yon 109

Enable 86
Clipping

Outcodes 253

see Clip plane
Clone

Pixel map 286
Close

File 63

Call-back 127, 371

CLUT 16
Collision detection 83, 248

see Pick

398

Colour 16
Buffer — see Pixel map
Integral type 112
Light 146
Look up table 16
Material 156, 158
Column
Font spacing 136
Comparison
Structure heading — see Heading
Conical
Light 146
Constant
Light attenuation 147
Constructing
Actor 89
Actor hierarchy 80—1
Order table 265
‘Construction & Destruction’
Structure heading — see Heading
Conversion
Structure heading — see Heading
Converting
Angle 104
Colours 112
Co-ordinates 23, 82—3, 226, 251-3
Degrees 104
Depth to view z ordinate 24
Euler
from Unit quaternion 314
to Matrix 121-22
to Unit quaternion 121
Host to network word order 70
Matrix
from Unit quaternion 314—15
Network to host word order 70
Numbers 104
Radians 104
Scalar 104, 333
Transform
to Matrix 342
Unit quaternion
to Euler 314
to Matrix 314—15
View z ordinate to depth 24, 32
Co-ordinate space 22
Actor 22
Camera 22
Converting 82

Copyright © 1996 Argonaut Technologies Limited

Converting between 23
from Actor to screen 83
from Depth to camera 24
from Model to screen 2513
Model 22
Reference actor 13
Sceen 23
Screen 23, 24
View 23
World 22
Co-ordinates
Converting 23
Generating for texture map 233
Texture 233
Coplanar faces 123
‘Copy/Assign’
Structure heading — see Heading
Copy
Dirty rectangle 42
Matrix 183, 207, 223—24
Memory block 53
Pixel map 44, 279
Pixel map rectangle 280
String 56
Vector 352, 361, 365
Cosine
Angle 103
Fixed 132
Count
Actors in file 94
Materials in file 165
Materials in registry 162
Models in file 243
Models in registry 239
Pixel maps in file 294
Resource class 328
Shade tables in registry 290
Texture maps in registry 287
Create
new resource class 325
Creating
Actor 89
Depth buffer 286
Off screen pixel maps 286
Order table 265
Resource class 324
Cross
Vector product 358

Copyright © 1996 Argonaut Technologies Limited

General Index

CRT fly back 44
Culling

Back face 153
Custom

Model 229, 247

Model data 231
Cylinder

Texture map 233

D
Data
Pixel map 273
Daylight
Ambient lighting 155
Deallocate
Material 162
Memory 56
Call-back 100, 384
Model 239
Pixel map 286
Pool 301
Decal
Texture map 153
Declaration
Function heading — see Heading
Default
Actor camera 111
Actor light 148
Actor material 78
Actor model 78
Camera 111
Diagnostic handler 10
Filing System 10
Filing system 10
Light 148
Material 78
Memory allocator 10
Model 78
Order table 265
Rendering style 79
Defaults
Creation of 10
Depth
Actor in Hierarchy 76
Channel 287
of Pixel map 287
to View z ordinate 24
Depth buffer 30, 272
Initialising 30

399

General Index

Pixel map 286
Description
Function heading — see Heading
Destroying
Actor 90
Order table 266
‘Construction & Destruction’
Structure heading — see Heading
Destructor
of Resource 330
Detach
Actor 81
Determinant
Matrix 222
Device
Pixel map 274
Diagnostic 65
Default handler 10
Failure call-back 114, 116
Handler identifier 116
Handler structure 116
Set handler 10, 68, 117
Warning call-back 115—16
Difference
of vectors 349, 357
Diffuse
Lighting contribution 155
Lighting factor 16
Dim
Light attenuation 146
Dimensions
of Pixel map 273
Direct
Light 146
Direct draw 72
Dirty rectangle
Copy 42
Fill 42
Tracking 41, 317
Disable
Clip plane 87
Light 86
Primary order table 264
Disc
Texture map 233
Display
Video buffer 43
Dither
Material 153

400

Divide
Fixed 131
Matrix 173—74, 190—1, 216
Scalar 331-32
Unit quaternion 313
Vector by scalar 350, 358
DOS 71
Dot
Vector product 351, 358, 364
Double buffering 43
Off screen pixel map 286
Double sided
Material 154
DR DOS 71
Draw
Line in pixel map 275
Dummy
Actor 13, 77
Duplicate
String 49, 56
Dynamic memory 53, 55

E
Edge
Rendering style 79
Effects
Function heading — see Heading
Empty pool 300
Enable
Clip plane 86
Custom model call-back 229
Light 85
Primary order table 263
Encoding
of Font 136
End
BRender 11
of File 58
Call-back 127
of file 63
Call-back 372
Rendering scene 37—8
Z buffer 40
Z sort 40
Engine — see Rendering Engine
Enumerate
Actor 91
Call-back 99
Material 162

Copyright © 1996 Argonaut Technologies Limited

Call-back 170
Model 240
Call-back 255
Resource
Call-back 322
Children (dependents) 50
Resource class 329
Call-back 320
Shade table 291
Call-back 336
Texture map 288
Call-back 150
Environment
Material 153
Set actor 85
Epsilon
Scalar 333
Euler angle set 46
from Matrix 205, 222
from Unit quaternion 314
Order 120
Structure 119
to Matrix 12122
to Quaternion 121
Transform 339, 340
Example
Function heading — see Heading
Exponential
Fixed 132
‘Import & Export’
Structure heading — see Heading

F

Face 15
Back face culling 153
Colour 156
Default material 78
Flags 123
Index 156
Keep original 229
Lighting 15
Material 123, 152
Matt 155
Model 229
Rendering style 79
Shiny 155
Smoothing 123
Structure 123
Texture co-ordinates 158

Copyright © 1996 Argonaut Technologies Limited

General Index

Vertex 366
Vertices 123
Failure

Diagnostic call-back 114, 116

Field of view
of Camera 109
File
Advance 62
Call-back 128, 369
Close 63
Call-back 127, 371
End of file 58, 63
Call-back 127, 372
Get character 62
Call-back 127, 373
Get line
Call-back 128, 374
Get line of text 61
Magics 60
Material script 167, 168
Mode test
Call-back 227
Open 57, 60

Call-back 127, 375, 377

Print formatted string 59
Put character 59
Call-back 127, 378
Put line 59
Call-back 128, 379
Read block 61
Call-back 127, 380
Set write mode 64
Write block 58
Call-back 127, 381
Write mode 227
Filing system 57
Attributes 57
Call-back 126, 370
Capabilities 57
Default 10
Identifier 128
Initialising 10
Set 10, 128
Structure 126
Fill
Dirty rectangle 42
Memory block 53
Pixel map 275

401

General Index

Filter
Texture 153
Find
Material 163
Call-back 171
Find failed 165
Hook 164
Model 240—41
Call-back 256
Sample hook 242
Set hook 241
Resource class 327
Call-back 321
Hook 328
Shade table 291, 292
Call-back 337
Texture map 288—89
Call-back 151
Fit
Map to model 233
Fixed
Fraction — see Fraction
Integral type 130
Pitch font 135
Point number 331
Floating
point number 331
Fluorescent
Light 15, 155
Fly back 44
Font
Height in pixel map 279
Pitch 135
Structure 135
Width of string in pixel map 278
Force front
Material 154
Format
Print to pixel map 277
Fraction 46
Integral type 139
Unsigned 345
Vector 14143
Free
Actor 90
Material 162
Memory 56
Available 55
Call-back 100, 384

402

Model 239

Order table 266

Pixel map 286

Pool 301

Pool block 298—99

Resource 51

Call-back 324, 330

Front

Material 154
Fully lit

Inner cone of spot light 147
Function heading — see Heading
Functions 33

Actor 13
Fundamental types 45

G

Games consoles 70
General
Lighting 15, 155
Generating
Texture co-ordinates 233
Geometry
Model 228, 229
Origin offset 230
Vertices 366
Get
Actor order table 88
Character from file 62
Line of text from file 61
Pixel map pixel 276
Get character
Call-back 127, 373
Get line
Call-back 128, 374
GIF
Import 295
Glyph 135, 137
Gouraud
Shading 153
Green
Colour component 112

H

Handler
Diagnostic 68, 116
Filing system 126, 128
Memory allocation 56, 100
Set diagnostic 117

Copyright © 1996 Argonaut Technologies Limited

Set memory allocator 101
Heading
Function 7
Structure 7
Height
of Font characters 136
of Font in pixel map 279
of Pixel map 273
Hidden surface removal 30
Hierarchical relationship 12
Actor 75, 80
Highlight 16, 79
Material specular lighting 156
Sharpness 156
Highlighting 79
Hither
Plane 109
Homogenous
2D matrix 172
3D matrix 188
Screen space 23
Homogenous screen space — see Screen space
Hook
Material find 164
Sample 165
Model find 241
Sample 242
Resource class find 328
Shade table find 292
Sample 293
Texture map find 289
Sample 290
Host to network
Word order 70

I

Identifier
Actor 80
Allocator 101
Camera 110
Diagnostic handler 116
Filing system 128
Light 147

Identity
Matrix 185, 209, 225
Transform 339

IFF
Import 296

Copyright © 1996 Argonaut Technologies Limited

General Index

‘Import & Export’
Structure heading — see Heading
Import
3D Studio 244
BMP files 295
GIF files 295
IFF file 296
Neutral file format models 245
TGA file 296
Index
Blend table 157
Channel 287
Material 156
Shade table 156
Vertex prelight 367
Indexed
Colour map 272
Indirect
Lighting 155
Infinite
Direct light 146
Inheritance 14
Initialisation 10
Library 10
Structure heading — see Heading
Initialising
Filing system 10
Order table 264
Pixel map 275
Registry 10
Renderer 27
Resource classes 10
Z buffer 30
Z buffer renderer 28
Z sort renderer 28
Inner
Cone of spot light 147
Input Device Support 69
Inquire
Memory 55
Call-back 100, 385
Insert
Primitive into order table 262
Integer
Integral type 144
Unsigned 347
“The Integral Type’
Structure heading — see Heading

403

General Index

Intel 72
Intensity

Light 147
Interior

Face lighting 154
Interpolation

Spherical linear — see Unit quaternion
Intersection

Actor 83

Object/object — see Pick
Inverse

Distance 332

Matrix 17374, 19091, 216

Pixel map 285

Unit quaternion 313

K
Keep

Original model data 229

L
Lamp
Spot light 146
Largest
Representable scalar 333
Length
Fixed 131
of Vector 332
Vector 351, 359
Length preserving
Matrix 184
Matrix inverse 174, 191
Matrix normalise 208
Matrix transform 339
Level of detail 248
Library
Termination 10, 11
‘Referencing & Lifetime’
Structure heading — see Heading
Light 15, 18
see Actor
Actor 17, 77, 85—6
Ambient 155
Behaviour 146
Colour 146
Data structure 145
Default 148
Direct 146
Disable 86

404

Enable 85

Identifier 147

Material 153

Point 146

Prelighting 234

Spot 146

Type 146

User data 148
Lightbulb

Point light 146
Line

Draw in pixel map 275

Primitive 305
Linear

Interpolated texture 153

Light attenuation 147
Load

Actor 95, 97

Material 166—68

Model 243—45

Pixel map 294-96
Locate

Actor file 94

Material file 165

Model file 243

Pixel map file 294
Logos 153
Look up

Transform 339, 340
Low precision

Normalise vector 360

Luminous
Light 15, 155

M
Machine word
Ordering 70
Macintosh 72
Magics 60, 227
Magnitude
Vector 332, 351, 359
‘Access & Maintenance’
Structure heading — see Heading
malloc() — see Memory Allocate
Manipulator 69
Map - see Texture map
Mask
see Blend table
Texture map 153

Copyright © 1996 Argonaut Technologies Limited

General Index

Match Apply to point 191-94, 217, 219
Pixel map 285 Apply to vector 193—94, 218, 220
Material 15 Copy 183, 207, 223—24
Add 159 Determinant 222
Allocate 161 Divide 173—74, 19091, 216
Blend table 153, 157 from Euler 12122
Colour 158 from Transform 342
Count 162 from Unit quaternion 314—15
Count in file 165 Identity 185, 209, 225
Default 78 Inverse 173—74, 19091, 216
Diffuse lighting 155 Multiply 173, 177-83, 189, 195-204, 216,
Double sided 154 220-21
Enumerate 162 Normalise 184, 208
Call-back 170 Perspective 226
Face 123 Rolling Ball 69
Find 163 Rotate 187, 198—99, 203—4, 212—14
Call-back 171 Scale 186, 196, 201, 210, 225
Find failed load 165 Shear 187, 19697, 2012, 210—12
Find hook 164 Structure 172, 188, 215
Sample call-back 165 Texture map transform 158
Free 162 to Euler 205, 222
Identifier 158 to Transform 206
Index base 156 to Unit quaternion 205, 223
Index range 156 Transform 199, 204, 221, 339, 341
Lighting 15 Translate 185, 195, 200, 209
Load 166—68 Transpose 193, 194, 219, 220
Matt 155 Matt
of Primitive 305 Material 155
Prelighting 367 Maximum
Remove 160—-61 Vertex 230
Save 168 Members
Shade table 156 Structure heading — see Heading
Shiny 155 Memory
Specular lighting 156 Allocate 55
Specular power 156 Call-back 100, 382
Structure 152 Allocator 100
Transform 158 Block copy 53
Transparency 157 Block fill 53
Transparent 158, 273 Class type 54
Two sided 154 Deallocate 56
Update 160 Free 56
User data 159 Call-back 100, 384
Matrix 46 Inquire 55
2D Affine 172 Call-back 100, 385
3D Manipulator 69 Management 53
Actor to actor 82 Pools 56
Actor to screen 83 Set allocator 101
Adjoint 221 Memory allocation
Apply 174—76 Default handler 10

Copyright © 1996 Argonaut Technologies Limited 40 5

General Index

Handler 56 Lighting 15
Pool 298 Load 243—45
Set handler 10 Material 152
Memory Class Morphing 248
Application 55 Order table 87—8
Inquire memory available 55 Performance 229
Memory class 48 Pick
Merge Call-back 257
Order table 264 Pivot point 230
Mesh Quick update 229
Model 228 Remove from registry 237—38
Minimum Render 249-50
Vertex 230 Rendering style 79
MIPS 72 Sample find hook 242
Mode Save 245—46
Binary 64 Set find hook 241
Pick 231 Structure 228
see Write mode 64 to Screen co-ordinate space 251
Test call-back 227 Update 237
Text 64 User data 231
Model 14 Vertex 229, 366
Actor 14, 77 Modified Extent — see Dirty rectangle
Add to registry 235—36 tracking
Allocate 239 Moon
Apply texture map 233 Direct light 146
Behaviour 229 Morphing
Bounding box 82, 106, 230 Keep original model data 229
Bounding radius 230 Model 248
Co-ordinate space 22 Mouse 69
Co-ordinates 366 Move
Co-ordinates to screen space 251—53 Actor 81
Count in file 243 MS DOS 71
Count in registry 239 Multiply
Custom call-back 229, 247 Fixed 130, 131
Default 78 Fraction 139
Default material 78 Matrix 173, 177-83, 189, 195-204, 216,
Don’t Weld 229 220-21
Enumerate 240 Scalar 33132
Call-back 255 Unit quaternion 312
Face 229 Vector by scalar 350, 357
Find 240—41 Vector cross product 358
Call-back 256 Vector dot product 351, 358, 364
Fit map 233
Flags 229 N
Free 239 Negate
Generate prelit vertex values 234 Vector 348, 356
Geometry 229, 366 Network to host
Identifier 230 Word order 70

Keep original 229

406 Copyright © 1996 Argonaut Technologies Limited

Neutral
File format import 245
Next
Free block in pool 298
Pool block on spike 302
None
Actor 13, 77
Rendering style 79
Texture map 233
Normalise
Matrix 184, 208
Unit quaternion 315
Vector 352, 360
Null actor — see None actor
Number
of Materials 162
of Model faces 230
of Model vertices 229
of Order table intervals 260

O
Object — see Actor
Off screen 77

Buffer, displaying 43

Pixel map 286

Swap 44

Offset

Model geometry origin 230
On screen 77

Check 250
One

Fixed 133
Opacity

see Blend table
Open

File 57, 60

Call-back 127, 375, 377

Operations

Structure heading — see Heading
Optimising

Model rendering 229
Order table 31

Allocate 265

Bucket 304

Clear 264

Default 265

Disable primary 264

Enable primary 263

Flags 261

Copyright © 1996 Argonaut Technologies Limited

General Index

Free 266

Get actor 88

Insert primitive 262

Merge 264

Primary 259

Primitive 304

Set actor 87

Size 260

Structure 259

Type 261

Visits 262

Z range 260

Z sort position 260
Ordering

Machine word 70
Origin

of pixel map 273
Original

Keep model data 229
Other Actors 20
Out codes 253
Outer

Cone of spot light 147

P
Palette 16

Pixel map 274
Parallel

Camera 109

Light 146
Parent

Actor 75
Partially lic

Outer cone of spot light 147
Pattern

matching 92

PC DOS 71
Penumbra
of spot light 147
Perspective
Camera 109
Correct texture 153
Matrix 226
Phong
Lighting 15
Physical

Pixel map width (row length) 274
Screen space 23

407

General Index

Pi 104
Pick 44
2D call-back 267
2D scene 84
3D call-back 269
3D scene 83
Model 231
Call-back 257
Pitch
Font 135
Pivot
Point of model 230
Pixel
Get 276
Set 276
Pixel map 41
Actor at pixel 84
Allocate 284
Channels 287
Clearing 42
Clone 286
Copy 44, 279
Copy rectangle 280
Count in file 294
Data 273—74
Data structure 271
Dimensions 273
Dirty rectangle
Copy 42
Fill 42
Double buffer 44
Draw line 275
Fill 275
Flags 273
Font 135-36
Free 286
Get pixel 276
Identifier 274
Load 294—96
Match 285
Material texture 158
Operations 41
Origin 273
Palette 274
Pixel get 276
Pixel set 276
Pixel size 287
Rectangle fill 275
Rendering to 41

408

Rendering to video 43

Save 296, 297

Set pixel 276

Suballocate 285

Text 276, 277

Text height 279

Text widch 278

Type 272

User data 274

Using 41
Plane

Texture map 233
Platform Specific

Structure heading — see Heading
Plot

Point in pixel map 276
Point

Apply matrix 174, 176, 191-94, 217, 219

Light 146
Primitive 305
Rendering style 79
Pool
see Memory
Allocate 300
Block 302
Allocate 299
Free 299
Size 299
Spike 302
Chunk size 299
Data structure 298
Empty 300
Free 301
Memory class 299
Positional relationship 12
Actor 76, 82
Power
Fixed 132
Scalar 332
Specular lighting 156
PowerPC 72
Preconditions
Function heading — see Heading
Prelit
Colours 367
Generating prelit values 234
Index 367
Material 153
Vertex 366

Copyright © 1996 Argonaut Technologies Limited

Preprocessing 29
Primary
Order table 259, 263
Disable 264
Primitive
Call-back 307
Data structure 304
Heap size 28
Insert into order table 262
Linked list 262
Material 305
Order table 259
Set call-back 39
Sorting 31
Type 305
Print
Formatted string to file 59
to Pixel map 277
Projected
Screen space 23
Projected screen space — see Screen space
Proportional
Pitch font 135
PSX 70
Put character 59
Call-back 127, 378
Put line 59
Call-back 128, 379

Q

Quadratic
Light attenuation 147
Quaternion — see Unit quaternion

Quick
Normalise vector 360
Update 229
R
Radius
Model 230
Raise
Fixed 132
Scalar 332
Range

Material index 156
Read block 61

Call-back 127, 380
Real

Scalar number 331

Copyright © 1996 Argonaut Technologies Limited

General Index

Reciprocal
Fixed 132
Fixed length 131
Scalar 331
Vector length 332
Rectangle
Copy 42, 280
Fill 42, 275
Red
Colour component 112
Reference
Actor 13, 77
‘Referencing & Lifetime’
Structure heading — see Heading
Reflected light 15
Registry 29
Add material 159
Add model 235, 236
Add shade table 282
Add texture map 280, 281
Count materials 162
Count models 239
Count shade tables 290
Count texture maps 287
Enumerate material 162
Enumerate model 240
Enumerate shade table 291
Enumerate texture maps 288
Find model 240—41
Find shade tables 29192
Find texture map 288—89
Initialising 10
Material find 163
Model update 229
Remove material 160—61
Remove model 237—38
Remove shade table 283
Remove texture map 281-82
Update material 160
Update model 237
Update shade table 283
Update texture map 281
Releasing
Actor 90
All memory 10
Memory 56
Order table 266
Relink
Actor 81

General Index

Remarks
Function heading — see Heading
Remove
Actor 81
Child actor 81
Material 160—61
Model from registry 237—38
Resource block 51
Resource class 325
Shade table from registry 283
shade table from registry 283
Texture map from registry 281—82
Render
Model 249, 250
Render bounds
Call-back 317
Set call-back 38—9
Renderer
Initialising 27
Terminating 40
Z buffer 30
Initialising 28
Z. sort 31
Initialising 28
Rendering 33
Custom model 229, 247
End 37-8
Engine 26
Pixel map to video 43
Scene 34-7
Style 79
to Pixel map 41
Resource
Add 49
Allocate 48
Block class 49
Block size 50
Class type 54
Duplicate string 49
Enumerate
Call-back 322
Children (dependents) 50
Free 51
Call-back 324, 330
Identifier 324
Remove 51
Resource class 48
Add 32425
Count 328

410

Data structure 323
Enumerate 329
Call-back 320
Find 327
Call-back 321
Find hook 328
Initialising 10
Remove 325

Restarting

BRender 10

Result

Function heading — see Heading

Retaining

Original vertices 229

Retrace 44
RGB

Channel 287
to Colour 112

Rolling Ball 69
Root

Actor 13
Fixed (square root) 132
Scalar (square root) 332

Rotate

Matrix 180, 183, 187, 19899, 203—4, 212—

14
Texture 158

Row

S

Font spacing 136

Sample

Shade table find hook 293
Texture map find hook 290

Saturn 70
Save

Actor 94, 96
Material 168
Model 245—46
Pixel map 296—97

Scalar 45

Copyright © 1996 Argonaut Technologies Limited

Fixed type 130

Fraction 139

Integral type 331

Largest representable 333
Smallest representable 333
Unity - see Unity
Unsigned fraction 345

Scale
Matrix 178, 181, 186, 196, 201, 210, 225
Texture 158
Vector 350, 357—58
Scene
2D pick 84
3D pick 83
End rendering 37—8
Model prelighting 234
Rendering 347
Screen
Co-ordinate space 24
from Actor co-ordinates 83
space 23
Script
Material load 167, 168
Searching
for Actor 92
for Material 162, 163
for Model 240, 241, 256
for Resource class 327, 328
for Shade table 337
‘See Also’
Function heading — see Heading
Sega 70
Selection 79
Set
Actor order table 87
Diagnostic handler 10, 68, 117
Environment actor 85
Filing system 10
Filing system handler 128
Material find hook 164, 165
Matrix 185—87, 209—14, 225
Memory allocation handler 101
Memory allocator 10
Pixel map pixel 276
Primitive call-back 39
Render bounds call-back 38—9
Resource class find call-back 328
Shade table find hook 292
Texture map find call-back 289
Vector 353—54, 362—63
Write mode 64
Shade table 16
Add to registry 282
Count in registry 290
Data structure 271
Enumerate 291

Copyright © 1996 Argonaut Technologies Limited

General Index

Call-back 336
Find 291-92
Call-back 337
Find hook call-back 292
Find hook sample 293
Material 156
Remove from registry 283
Update in registry 283
Shading
Smooth 153
Sharpness
Highlight 156
Shear
Matrix 178-79, 182, 187, 196—97,
201-2, 21012
Texture 158
Shiny
Material 155
Sibling
Actor 75
Simple memory services 53
Sine
Angle 103
Fixed 132
Size
Integral type 335
of Order table 260
of Pixels 287
of Pool block 299
Pool chunk 299
Skeleton Application 26
SLERP - see Unit quaternion
Smallest
Representable scalar 333
Smooth
Material 153
Smoothing
Face 123
Sony 70
Spacing
Font 136
Specification
Structure heading — see Heading
Specular
Lighting contribution 156
Lighting factor 16
Power 156
Sphere
Texture map 233

411

General Index

Spherical linear interpolation

of Unit quaternion 313
Spike

Next pool block 302
Spot

Light 146—47
Square

Fixed 131

Scalar 331

Vector length 351, 359
Square root

Fixed 132

Scalar 332
Standard filing system services 57
Stratum

Depth 260

Ordering 260
String

Duplicate 49, 56
“The Structure’

Structure heading — see Heading
Structure heading — see Heading

Style

Rendering 79
Suballocate

Pixel map 285
Subtract

Scalar 331

Vector 349, 357
Sum

of Vectors 349, 356
Sun

Direct light 146
Supplementary

Structure heading — see Heading
Surface — see Material
Swapping

Video buffers 43
Switching

Video buffers 43
Synchronisation — See Video

T
Table — see Shade table
Tangent

Angle 103
Terminating

Renderer 40

412

Termination
BRender 10-1
Library 10—1
Test
for End of file 63
Mode call-back 227
On screen 250
Text
Font 135
Get line 61
Height in pixel map 279
Mode 57, 64, 227
Put line 59
Width for font and pixel map 278
Write string to pixel map 276—77
Texture map 17
Add to registry 280—81
Apply 233
Co-ordinates 366—67
Count in registry 287
Cylinder 233
Data structure 271
Decal 153
Disc 233
Dithering 153
Enumerate 288
Call-back 150
Environment 153
Find 288—-89
Call-back 151
Find hook 289
Fit to model 233
Light 153
Material 158
None 233
Plane 233
Remove from registry 281—82
Sample find hook call-back 290
Sphere 233
Transform 158, 172
Transparency 158, 273
Update 160, 281
TGA
Import 296
“The Call-back Function’
Structure heading — see Heading
“The Integral Type’
Structure heading — see Heading

Copyright © 1996 Argonaut Technologies Limited

General Index

“The Structure’ Spherical linear interpolation 313
Structure heading — see Heading to Euler 314
Transform to Matrix 314—15
Actor 76, 82 Transform 339, 341
Actor to actor 82 Unit vector 141—43, 352, 360
Actor to screen 83 Unity
Camera 226 Fixed 133
Data structure 338 Unknown
from Matrix 206 Mode 227
Matrix 188, 199, 204, 221 Unsigned fraction
Texture map 158, 160, 172, 233 Integral type 345
to Matrix 342 Unsigned integer
to Transform 342 Integral type 347
Type 339 Update
Translate Material 159—60
Matrix 177, 181, 185, 195, 200, 209 Model 229, 237
Texture 158 Model flags 229
Translation Shade table in registry 283
Transform 339 Texture map 281
Translucency Updating screen 43
see Blend table User defined
Transparent Model member 231
Material 157 Model rendering 229
Texture 158, 273
Transpose V
Matrix 176, 193—94, 219-20 Vector 46
Triangle Add 349, 356
Primitive 305 Apply matrix 175—76, 193—94, 218, 220
Trigonometry 103 Copy 352, 361, 365
Fixed 132 Cross product 358
True colour 156 Data structure 348, 355, 364
Colour map 272 Dot product 351, 358, 364
Two Fractional 141—43
Sided material 154 Inverse scale 358
Type Length 332, 351, 359
Actor 76, 77 Magnitude 332, 359
Camera 109 Negate 348, 356
of Pixel map 272 Normalise 352, 360
Scale 350, 357
U Set 353—54, 362—63
Unit Subtract 349, 357
Vector 360 Vertex 14
Unit quaternion 47 Colour 367
Data structure 311 Co-ordinates 366
from Euler 121 Data structure 366
from Matrix 205, 223 Don’t weld 229
Inverse 313 Generating prelit values 234
Multiply 312 Keep original 229
Normalise 315 Maximum 230

Copyright © 1996 Argonaut Technologies Limited 4 1 3

General Index

Model 229

Offset 230

Prelit index 367

Specified in face 123

Texture co-ordinates 233, 367
Vertical retrace 44
Video

Blanking period 44

Rendering pixel map to 43
Video refresh — see Double buffering
View

Space 23

Volume 24, 226
Viewer — see Camera
Viewing pyramid

Angle 109

Ay
Warning

Diagnostic call-back 115—16
Widch

Font characters 135—36

of Pixel map 273

of String in font 278
Wild cards 92
Windows 71
Wire frame

Flags 123

Rendering style 79
Word

Ordering 70
World

Co-ordinate space 22
Write block 58

Call-back 127, 381
Write mode 64, 227

Y
Yon

Plane 109

414

YUV
Channel 287
Z
Z
Front material 154
7 buffer 30
Depth to camera z 24
End 40
Initialising 30
Renderer
Initialising 28
see Pixel map
Z. sort 31
End 40
Get actor order table 88
Insert primitive into order table 262
Order table 259
Renderer
Initialising 28
Set actor order table 87

Copyright © 1996 Argonaut Technologies Limited

Notes

Notes

Notes

Notes

BRender API Quick Reference

Functions

br_actor* BrActorAdd(br_actor* parent, br_actor* a) 82

br_actor* BrActorAllocate (br_uint_8 actor_type, void* type_data) 92

br_uint_32 BrActorEnum(br_actor* parent, br_actor_enum_cbfn* callback, void* arg) 93
br_uint_32 BrActorFileCount (const char* filename, br_uint_16* num) 97

void BrActorFree (br_actor* a) 92

br_actor* BrActorLoad(const char* filename) 98

br_uint_32 BrActorLoadMany (const char* filename, br_actor** actors, br_uint_16 num) /00
void BrActorRelink (br_actor* parent, br_actor* a) 83

br_actor* BrActorRemove (br_actor* a) 83

br_uint_32 BrActorSave (const char* filename, const br_actor* actor) 97

br_uint_32 BrActorSaveMany (const char* filename, const br_actor* const * actors, br_uint_16 num) 99
br_actor* BrActorSearch (br_actor* root, const char* pattern) 94

br_uint_32 BrActorSearchMany (br_actor* root, const char* pattern, br_actor** actors, int max) 95
br_uint_8 BrActorToActorMatrix34 (br_matrix34* m, const br_actor* a, const br_actor* b) 84
br_bounds* BrActorToBounds (br_bounds* b, const br_actor* ap) 84

void BrActorToScreenMatrix4 (br_matrix4* m, const br_actor* a, const br_actor* camera) 86
const br_allocator* BrAllocatorSet (const br_allocator* newal) /03

void BrBegin (void) /0

void BrBlockCopy (void* dest_ptr, const void* src_ptr, int dwords) 54

void BrBlockFill (void* dest_ptr, int value, int dwords) 54

br_matrix34* BrBoundsToMatrix34 (br_matrix34* mat, const br_bounds* bounds) /09

void BrClipPlaneDisable (br_actor* cp) 89

void BrClipPlaneEnable (br_actor* cp) 89

br_diaghandler* BrDiagHandlerSet (br_diaghandler* newdh) //9

void BrEnd(void) /]

br_actor* BrEnvironmentSet (br_actor* a) §7

br_matrix34* BrEulerToMatrix34 (br_matrix34* mat, const br_euler* euler) /23

br matrix4* BrEulerToMatrix4 (br_matrix4* mat, const br_euler* euler) /24

br_quat* BrEulerToQuat (br_quat* g, br_euler* euler) /23

void BrFileAdvance (long int count, void* £) 63

br_uint_32 BrFileAttributes (void) 58

void BrFileClose (void* £) 64

int BrFileEof (const void* f) 64

int BrFileGetChar (void* £) 63

int BrFileGetLine (char* buf, br_size_t buf_ len, void* f) 62

void* BrFileOpenRead (const char* name, br_size_t n_magics, br_mode_test_cbfn* mode_test, int* mode_result) 6/
void* BrFileOpenWrite (const char* name, int mode) 58

int BrFilePrintf (void* £, const char* fmt, ...) 60

void BrFilePutChar (int ¢, void* f) 60

void BrFilePutLine (const char* buf, void* f£) 60

int BrFileRead(void* buf, int size, int n, void* f) 62

const br_filesystem* BrFilesystemSet (const br_filesystem* newfs) /30

int BrFileWrite (const void* buf, int size, int n, void* f) 59

br_uint_32 BrFmtASCLoad (const char* name, br_model** mtable, br_uint_16 max_models) 248
br_pixelmap* BrFmtBMPLoad (const char* name, br_uint_32 flags) 302

br_pixelmap* BrFmtGIFLoad (const char* name, br_uint_32 flags) 302

br_pixelmap* BrFmtIFFLoad (const char* name, br_uint_32 flags) 303

br_model* BrFmtNFFLoad (const char* name) 249

br_pixelmap* BrFmtTGALoad (const char* name, br_uint_32 flags) 303

void BrLightDisable (br_actor* 1) 88

void BrLightEnable (br_actor* 1) 88

br_pixelmap* BrMapAdd(br_pixelmap* pixelmap) 287

br_uint_32 BrMapAddMany (br_pixelmap* const* pixelmaps, int n) 287

br_uint_32 BrMapCount (const char* pattern) 294

br_uint_32 BrMapEnum(const char* pattern, br_map_enum_cbfn* callback, void* arg) 294
br_pixelmap* BrMapFind(const char* pattern) 295

br_pixelmap* BrMapFindFailedLoad(const char* name) 296

br_map_find cbfn* BrMapFindHook (br_map_find cbfn* hook) 295

br_uint_32 BrMapFindMany (const char* pattern, br_pixelmap** pixelmaps, int max) 295
br_pixelmap* BrMapRemove (br_pixelmap* pixelmap) 288

Copyright © 1996 Argonaut Technologies Limited

BRender API Quick Reference

br_uint_32 BrMapRemoveMany (br_pixelmap* const* pixelmaps, int n) 288

void BrMapUpdate (br_pixelmap* pixelmap, br_uint_16 flags) 287

void BrMatrix34RollingBall (br_matrix34* mat, int dx, int dy, int radius) 70

void* BrMemAllocate (br_size t size, br_uint_8 type) 56

void* BrMemCalloc(int nelems, br_size_t size, br_uint_8 type) 56

void BrMemFree (void* block) 57

br_size_t BrMemInquire (br_uint_8 type) 56

char* BrMemStrDup (const char* str) 57

br_model* BrModelAdd (br_model* model) 240

br_uint_32 BrModelAddMany (br_model* const* models, int n) 240

br_model* BrModelAllocate (const char* name, int nvertices, int nfaces) 243

void BrModelApplyMap (br_model* model, int map_type, const br_matrix34* xform) 237

br_uint_32 BrModelCount (const char* pattern) 243

br_uint_32 BrModelEnum(const char* pattern, br_model_enum_cbfn* callback, void* arg) 244

br_uint_32 BrModelFileCount (const char* filename, br_uint_16* num) 247

br_model* BrModelFind(const char* pattern) 244

br_model* BrModelFindFailedLoad (const char* name) 246

br_model_find cbfn* BrModelFindHook (br_model_find cbfn* hook) 245

br_uint_32 BrModelFindMany (const char* pattern, br_model** models, int max) 245

br_matrix34* BrModelFitMap (const br_model* model, int axis_0, int axis_1, br_matrix34* transform) 238

void BrModelFree (br_model* m) 243

br_model* BrModelLoad (const char* filename) 247

br_uint_32 BrModelLoadMany (const char* filename, br_model** models, br_uint_16 num) 248

int BrModelPick2D (br_model* model, const br_material* material, const br_vector3* ray pos, const br_vector3* ray dir,
br_scalar t_near, br_scalar t_far, br_modelpick2d_cbfn* callback, void* arg) 235

br_model* BrModelRemove (br_model* model) 24/

br_uint_32 BrModelRemoveMany (br_model* const* models, int n) 242

br_uint_32 BrModelSave (const char* filename, const br_model* model) 249

br_uint_32 BrModelSaveMany (const char* filename, const br_model* const* models, br_uint_16 num) 250

void BrModelUpdate (br_model* model, br_uint_16 flags) 24/

br_uint_8 BrOnScreenCheck (const br_bounds* bounds) 254

br_uint_8 BrOriginToScreenXY (br_vector2* screen) 255

br_uint_32 BrOriginToScreenXYZO (br_vector3* screen) 256

br_pixelmap* BrPixelmapAllocate (br_uint_8 type, br_uint_16 w, br_uint_16 h, void* pixels, int flags) 290

br_pixelmap* BrPixelmapAllocateSub (br_pixelmap* pm, br_uint_16 x, br_uint_16 y, br_uint_16 w, br_uint_16 h) 29]

br_uint_16 BrPixelmapChannels (const br_pixelmap* pm) 293

br_pixelmap* BrPixelmapClone (const br_pixelmap* src) 292

void BrPixelmapCopy (br_pixelmap* dst, const br_pixelmap* src) 285

void BrPixelmapDirtyRectangleCopy (br_pixelmap* dst,const br_pixelmap* src, br_int_16 x, br_int_16 y,br uint_16 w,
br_uint_16 h) 43

void BrPixelmapDirtyRectangleFill (br_pixelmap* dst,br_int_16 x, br_int_16 y, br_uint_16 w, br_uint_16 h,br_uint_32 colour)
43

void BrPixelmapDoubleBuffer (br_pixelmap* dst, br_pixelmap* src) 45

br_uint_32 BrPixelmapFileCount (const char* filename, br_uint_16* num) 30/

void BrPixelmapFill (br_pixelmap* dat, br_uint_32 colour) 28/

void BrPixelmapFree (br_pixelmap* pmap) 293

void BrPixelmapLine (br_pixelmap* dst, br_int_16 x1, br_int_16 yl, br_int_16 x2, br_int_16 y2, br_uint_32 colour) 28/

br_pixelmap* BrPixelmapLoad(const char* filename) 30/

br_uint_32 BrPixelmapLoadMany (const char* filename, br_pixelmap** pixelmaps, br_uint_16 num) 30/

br_pixelmap* BrPixelmapMatch (const br_pixelmap* src, int match_type) 292

br_uint_32 BrPixelmapPixelGet (const br_pixelmap* src, br_int_16 x, br_int_16 y) 282

void BrPixelmapPixelSet (br_pixelmap* dst, br_int 16 x, br_int 16 y, br_uint_32 colour) 282

br_uint_16 BrPixelmapPixelSize (const br_pixelmap* pm) 293

void BrPixelmapRectangleCopy (br_pixelmap* dst, br_int_16 dx, br_int_16 dy, const br_pixelmap* src, br_int_16 sx, br_int_16
sy, br_uint_16 w, br_uint_16 h) 286

void BrPixelmapRectangleFill (br_pixelmap* dst, br_int_16 x, br_int 16 y, br_uint_16 w, br_uint_16 h, br_uint_32 colour) 28/

br_uint_32 BrPixelmapSave (const char* filename, const br_pixelmap* pixelmap) 304

br_uint_32 BrPixelmapSaveMany (const char* filename, const br_pixelmap* const* pixelmaps, br_uint_16 num) 304

void BrPixelmapText (br_pixelmap* dst, br_int_16 x, br_int_16 y, br_uint_32 colour, const br_font* font, const char* text)
283

void BrPixelmapTextF (br_pixelmap* dst, br_int_16 x, br_int_16 y, br_uint_32 colour, const br_font* font, const char* fmt,
Lol) 283

br_uint_16 BrPixelmapTextHeight (const br_pixelmap* dst, const br_font* font) 285

Copyright © 1996 Argonaut Technologies Limited 2

BRender API Quick Reference

br_uint_16 BrPixelmapTextWidth (const br_pixelmap* dst, const br_font* font, const char* text) 284

br_uint_8 BrPointToScreenXY (br_vector2* screen, const br_vector3* point) 255

void BrPointToScreenXYMany (br_vector2* screens, const br_vector3* points, br_uint_32 npoints) 256

br_uint_32 BrPointToScreenXYZO (br_vector3* screen, const br_vector3* point) 257

void BrPointToScreenXYZOMany (br_vector3* screens, br_uint_32* outcodes, const br_vector3* points, br_uint_32 npoints) 258

br_pool* BrPoolAllocate(int block_size, int chunk _size, br_uint_8 mem_type) 308

void* BrPoolBlockAllocate (br_pool* pool) 307

void BrPoolBlockFree (br_pool* pool, void* b) 307

void BrPoolEmpty (br_pool* pool) 308

void BrPoolFree (br_pool* pool) 309

br_quat* BrQuatInvert (br_quat* q, const br_quat* qq) 322

br_quat* BrQuatMul (br_quat* g, const br_quat* 1, const br_gquat* r) 32/

br_quat* BrQuatNormalise (br_quat* q, const br_quat* qq) 325

br_quat* BrQuatSlerp(br_quat* q, const br_quat* 1, const br_quat* r, br_scalar t, br_int_16 spins) 322

br_euler* BrQuatToEuler (br_euler* euler, const br_quat* q) 323

br_matrix34* BrQuatToMatrix34 (br_matrix34* mat, const br_quat* q) 323

br_matrix4* BrQuatToMatrix4 (br_matrix4* mat, const br_quat* q) 324

void* BrResAdd (void* vparent, void* vres) 50

void* BrResAllocate (void* vparent, br_size_t size, int res_class) 49

br_uint_32 BrResChildEnum(void* vres, br_resenum cbfn* callback, void* arg) 5/

br_uint_8 BrResClass (void* vres) 50

br_resource_class* BrResClassAdd(br_resource_class* rclass) 335

br_uint_32 BrResClassAddMany (br_resource_class* const* items, int n) 336

br_uint_32 BrResClassCount (const char* pattern) 339

br_uint_32 BrResClassEnum(char* pattern, br_resclass_enum_cbfn* callback, void* arg) 340

br_resource_class* BrResClassFind(const char* pattern) 338

br_resclass_find_cbfn* BrResClassFindHook (br_resclass_find_cbfn* hook) 339

br_uint_32 BrResClassFindMany (const char* pattern, br_resource_class** items, int max) 338

br_resource_class* BrResClassRemove (br_resource_class* rclass) 336

br_uint_32 BrResClassRemoveMany (br_resource_class* const* items, int n) 336

void BrResFree (void* vres) 52

void* BrResRemove (void* vres) 52

br_uint_32 BrResSize (void* vres) 5/

char* BrResStrDup (void* vparent, const char* str) 50

void BrSceneModelLight (br_model* model, const br_material* default_material, const br_actor* root, const br_actor* a) 238

int BrScenePick2D (br_actor* world, const br_actor* camera, const br_pixelmap* viewport, int pick_x, int pick_y,
br_pick2d_cbfn* callback, void* arg) 86

int BrScenePick3D (br_actor* world, const br_actor* reference, const br_bounds* bounds, br_pick3d_cbfn* callback, void*
arg) 85

void BrScreenXYZToCamera (br_vector3* point, const br_actor* camera, const br_pixelmap* screen_buffer, br_int_ 16 x,
br_int_16 y, br_scalar zs) 25

br_scalar BrScreenZToCamera (const br_actor* camera, br_scalar sz) 24

br_pixelmap* BrTableAdd (br_pixelmap* pixelmap) 288

br_uint_32 BrTableAddMany (br_pixelmap* const* pixelmaps, int n) 289

br_uint_32 BrTableCount (const char* pattern) 297

br_uint_32 BrTableEnum(const char* pattern, br_table_enum_cbfn* callback, void* arg) 297

br_pixelmap* BrTableFind(const char* pattern) 298

br_pixelmap* BrTableFindFailedLoad(const char* name) 299

br_table_find_cbfn* BrTableFindHook (br_table_find cbfn* hook) 299

br_uint_32 BrTableFindMany (const char* pattern, br_pixelmap** pixelmaps, int max) 298

br_pixelmap* BrTableRemove (br_pixelmap* pixelmap) 289

br_uint_32 BrTableRemoveMany (br_pixelmap* const* pixelmaps, int n) 290

void BrTableUpdate (br_pixelmap* pixelmap, br_uint_16 flags) 289

void BrTransformToMatrix34 (br_matrix34* mat, const br_ transform* xform) 353

void BrTransformToTransform(br_transform* dest, const br_transform* src) 353

void BrVector2Accumulate (br_vector2* vl, const br_ vector2* v2) 360

void BrVector2Add (br_vector2* vl, const br_vector2* v2, const br_vector2* v3) 360

void BrVector2Copy (br_vector2* vl, const br_vector2* v2) 364

br_scalar BrVector2Dot (const br_vector2* vl, const br_vector2* v2) 362

void BrVector2InvScale (br_vector2* vl, const br_vector2* v2, br_scalar s) 36/

br_scalar BrVector2Length (const br_vector2* vl) 362

br_scalar BrVector2LengthSquared(const br_vector2* vl) 363

void BrVector2Negate (br_vector2* vl, const br_vector2* v2) 359

Copyright © 1996 Argonaut Technologies Limited 3

BRender API Quick Reference

void BrVector2Normalise (br_vector2* vl, const br_vector2* v2) 363

void BrVector2Scale (br_vector2* vl, const br_vector2* v2, br_scalar s) 36/

void BrVector2Set (br_vector2* vl, br_scalar sl, br_scalar s2) 364

void BrVector2SetFloat (br_vector2* vl1l, float f1, float £2) 365

void BrVector2SetInt (br_vector2* vl, int il, int i2) 365

void BrVector2Sub (br_vector2* vl, const br_vector2* v2, const br_vector2* v3) 36/

void BrVector3Accumulate (br_vector3* vl, const br vector3* v2) 368

void BrVector3Add (br_vector3* vl, const br_vector3* v2, const br_vector3* v3) 368

void BrVector3Copy (br_vector3* vl, const br_vector3* v2) 373

void BrVector3Cross (br_vector3* vl, const br_vector3* v2, const br_vector3* v3) 370

br_scalar BrVector3Dot (const br_vector3* vl, const br_vector3* v2) 370

void BrVector3InvScale (br_vector3* vl, const br_vector3* v2, br_scalar s) 370

br_scalar BrVector3Length(const br_vector3* vl) 371

br_scalar BrVector3LengthSquared(const br_vector3* vl) 37/

void BrVector3Negate (br_vector3* vl, const br_vector3* v2) 368

void BrVector3Normalise (br_vector3* vl, const br_vector3* v2) 372

void BrVector3NormaliselP (br_vector3* vl, const br_vector3* v2) 373

void BrVector3NormaliseQuick (br_vector3* vl, const br_ vector3* v2) 372

void BrVector3Scale (br_vector3* vl, const br_vector3* v2, br_scalar s) 369

void BrVector3Set (br_vector3* vl, br_scalar sl, br_scalar s2, br_scalar s3) 374

void BrVector3SetFloat (br_vector3* vl, float f1l, float f2, float £3) 374

void BrVector3SetInt (br_vector3* vl, int il, int i2, int i3) 375

void BrVector3Sub (br_vector3* vl, const br_vector3* v2, const br_vector3* v3) 369

void BrVector4Copy (br_vector4* vl, const br_vectord* v2) 377

br_scalar BrVector4Dot (const br_vector4* vl, const br_vectord* v2) 376

int BrWriteModeSet (int mode) 65

void BrZbBegin (br_uint_8 colour_type, br_uint_8 depth_type) 28

br_scalar BrZbDepthToScreenZ (br_uint_32 depth_z, const br_camera* camera) 30

void BrZbEnd (void) 4/

void BrZbModelRender (br_actor* actor, br_model* model, const br_material* material, br_uint_8 style, int on_screen, int
use_custom) 253

br_renderbounds_cbfn* BrZbRenderBoundsCallbackSet (br_renderbounds_cbfn* new_cbfn) 39

void BrZbSceneRender (br_actor* world, br_actor* camera, br_pixelmap* colour_buffer, br_pixelmap* depth_buffer) 34

void BrZbSceneRenderAdd (br_actor* tree) 37

void BrZbSceneRenderBegin (br_actor* world, br_actor* camera, br_pixelmap* colour_buffer, br_pixelmap* depth_buffer) 35

void BrZbSceneRenderEnd (void) 38

br_uint_32 BrZbScreenZToDepth (br_scalar sz, const br_camera* camera) 3/

br_order_table* BrZsActorOrderTableGet (const br_actor* actor) 90

br_order_table* BrZsActorOrderTableSet (br_actor* actor, br_order_table* order_table) 90

void BrZsBegin(br_uint_8 colour_type, void* primitive, br_uint_32 size) 28

br_scalar BrZsDepthToScreenZ (br_scalar depth_z, const br_camera* camera) 32

void BrZsEnd (void) 4/

void BrZsModelRender (br_actor* actor, br_model* model, const br _material* material, br_order_table* order_table, br_uint_8
style, int on_screen, int use_custom) 254

br_order_table* BrZsOrderTableAllocate (br_uint_16 size, br_uint_32 flags, br_uint_16 type) 270

void BrZsClearOrderTable (br_order_table* order_table) 269

void BrZsOrderTableFree (br_order_ table* order_ table) 27]

void BrZsOrderTablePrimaryDisable () 269

void BrZsOrderTablePrimaryEnable (br_order_table* order_table) 268

void BrZsOrderTablePrimitivelInsert (br_order_table* order_table, br_ primitive* primitive, br_uint_16 bucket) 267

br_uint_16 BrZsPrimitiveBucketSelect (const br_scalar* z, br _uint_16 pr_type, br_scalar min_z, br_scalar max_z, br_uint_16
ot_size, br_uint_16 ot_type) 3/8

br_primitive_cbfn* BrZsPrimitiveCallbackSet (br_primitive_cbfn* new_cbfn) 40

br_renderbounds_cbfn* BrZsRenderBoundsCallbackSet (br_renderbounds_cbfn* new_cbfn) 39

void BrZsSceneRender (br_actor* world, br_actor* camera, br_pixelmap* colour_buffer) 35

void BrZsSceneRenderAdd (br_actor* tree) 37

void BrZsSceneRenderBegin (br_actor* world, br_actor* camera, br_pixelmap* colour_buffer) 36

void BrZsSceneRenderEnd (void) 38

br_scalar BrZsScreenZToDepth (br_scalar sz, const br_camera* camera) 33

Copyright © 1996 Argonaut Technologies Limited 4

BRender API Quick Reference

Example Call-Back Functions

br_uint_32 BR_CALLBACK CBFnActorEnum(br_actor* a, void* arg) /0]

void BR_CALLBACK CBFnDiagFailure (const char* message) //6

void BR_CALLBACK CBFnDiagWarning(const char* message) /17

void BR_CALLBACK CBFnFileAdvance (br_size_t count, void* £) 38/

br_uint_32 BR_CALLBACK CBFnFileAttributes (void) 382

void BR_CALLBACK CBFnFileClose (void* f) 383

int BR_CALLBACK CBFnFileEOF (const void* f) 384

int BR_CALLBACK CBFnFileGetChr (void* £) 385

br_size_t BR_CALLBACK CBFnFileGetLine (char* buf, br_size_t buf_len, void* f) 386

void* BR_CALLBACK CBFnFileOpenRead (const char* name, br_size_t n_magics, br_mode_test_cbfn* mode_test, int* mode_result)
387

void* BR_CALLBACK CBnFileOpenWrite (const char* name, int mode) 389

void BR_CALLBACK CBFnFilePutChr (int ¢, void* £) 390

void BR_CALLBACK CBFnFilePutLine (const char* buf, void* £) 39/

br_size_t BR_CALLBACK CBFnFileRead(void* buf, br_size_t size, unsigned int nelems, void* £) 392

br_size t BR_CALLBACK CBFnFileWrite (const void* buf, br_size_t size, unsigned int nelems, void* £) 393

void* BR_CALLBACK CBFnMemAllocate (br_size_t size, br_uint_8 type) 394

void BR_CALLBACK CBFnMemFree (void* block) 396

br_size_t BR_CALLBACK CBFnMemInquire (br_uint_8 type) 397

void BR_CALLBACK CBFnModelCustom(br_actor* actor, br_model* model, const br material* material, void* render_data,
br_uint_8 style, int on_screen, const br_matrix34* model_to_view, const br_matrix4* model_to_screen) 25/

br_uint_32 BR_CALLBACK CBFnModelEnum(br_model* model, void* arg) 259

br_model* BR_CALLBACK CBFnModelFind(const char* name) 260

int BR_CALLBACK CBFnModelPick2D (br_model* model, const br_material* material, const br_vector3* ray pos, const br_vector3*
ray_dir, br_scalar t, int face, int edge, int vertex, const br_vector3* p, const br_vector2* map, void* arg) 26/

int BR_CALLBACK CBFnModeTest (const br_uint_8* magics, br_size_t n_magics) 23/

int BR_CALLBACK CBFnPick2D (br_actor* a, const br_model* model, const br_material* material, const br_vector3* ray pos,
const br_vector3* ray dir, br_scalar t_near, br_scalar t_far, void* arg) 272

int BR_CALLBACK CBFnPick3D (br_actor* a, const br_model* model, const br_material* material, const br_matrix34* transform,
const br_bounds* bounds, void* arg) 275

void BR_CALLBACK CBFnPrimitive (br_primitive* primitive, br_actor* actor, const br_model* model, const br material¥*
material, br_order_table* order_table, const br_scalar* z) 3/6

void BR_CALLBACK CBFnRenderBounds (br_actor* actor, const br_model* model, const br_material* material, void* render_data,
br_uint_8 style, const br_matrix4* model_to_screen, const br_int_32 bounds[4]) 326

br_uint_32 BR_CALLBACK CBFnResClassEnum(br_resource_class* item, void* arg) 330

br_ resource_class* BR_CALLBACK CBFnResClassFind(const char* name) 33/

br_uint_32 BR_CALLBACK CBFnResEnum(void* vres, void* arg) 333

void BR_CALLBACK CBFnResourceFree (void* res, br_uint_8 res_class, br_size_t size) 34/

br_uint_32 BR_CALLBACK CBFnTableEnum(br_pixelmap* table, void* arg) 347

br_pixelmap* BR_CALLBACK CBFnTableFind(const char* name) 348

Copyright © 1996 Argonaut Technologies Limited 5

BRender API Quick Reference

Copyright © 1996 Argonaut Technologies Limited

